Non-intrusive power waveform modeling and identification of air conditioning load

波形 聚类分析 计算机科学 动态时间归整 瞬态(计算机编程) 人工智能 模式识别(心理学) 电子工程 工程类 电信 雷达 操作系统
作者
Wenpeng Luan,Zun Wei,Bo Liu,Yixin Yu
出处
期刊:Applied Energy [Elsevier BV]
卷期号:324: 119755-119755 被引量:4
标识
DOI:10.1016/j.apenergy.2022.119755
摘要

As a typical flexible load, air conditioner (AC) can play a crucial role in improving energy efficiency and optimizing power grid operation. However, due to its continuously variable load characteristics, AC faces difficulties in feature extraction and unsupervised modeling for non-intrusive load monitoring. In coping with these problems, a novel fully unsupervised non-intrusive AC monitoring scheme is designed. Firstly, an autonomous AC waveform modeling method is introduced. According to the general electrical characteristics, the candidate AC (start and stop, etc.) transient waveform templates are captured from the aggregated data. On this basis, the transient waveform samples similar to candidate template are extracted and verified based on the common usage habit characteristics. Then AC model consisting of waveform template and feature vector is subsequently established by multi-dimensional clustering of the waveform samples. Secondly, an online AC state identification and power disaggregation method is proposed. Based on the dynamic time warping algorithm and guided filtering algorithm, an AC transient waveform extraction method via template matching is presented, which can extract complete and pure transient AC waveforms from the multi-appliance mixed operation scenarios. According to the extracted AC waveforms, the state identification and energy consumption estimation can be realized. In addition, the incremental clustering is carried on the online identification results to further update the established AC model. Finally, the comparison experiments on the REDD dataset and the real-world data measured from multiple users in China show that, the proposed method can construct AC templates in unseen scenarios and update the established AC models automatically, thus outperform the benchmarks in both operating state identification and power disaggregation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
典雅棒棒糖完成签到 ,获得积分10
2秒前
流流124141完成签到,获得积分10
6秒前
6秒前
xyzs完成签到,获得积分10
6秒前
carbon-dots发布了新的文献求助10
6秒前
Orange应助777采纳,获得10
9秒前
10秒前
10秒前
谢香辣完成签到,获得积分10
12秒前
15秒前
子云完成签到,获得积分10
16秒前
PlanetaryLayer完成签到,获得积分10
16秒前
吃猫的鱼发布了新的文献求助10
17秒前
达达发布了新的文献求助10
19秒前
香蕉觅云应助健忘的曼卉采纳,获得10
19秒前
nice糊涂慧完成签到,获得积分10
20秒前
CipherSage应助6633采纳,获得10
22秒前
实验好难应助成就随阴采纳,获得10
23秒前
24秒前
安详砖家完成签到 ,获得积分10
27秒前
29秒前
31秒前
达达完成签到 ,获得积分20
32秒前
33秒前
罗拉发布了新的文献求助10
35秒前
quantumdot发布了新的文献求助10
35秒前
醉熏的天薇完成签到,获得积分10
35秒前
geyunjie完成签到,获得积分10
37秒前
38秒前
niu应助zzz采纳,获得10
38秒前
JQKing发布了新的文献求助10
39秒前
40秒前
可达鸭完成签到,获得积分20
40秒前
40秒前
walden发布了新的文献求助10
42秒前
若尘应助罗拉采纳,获得10
42秒前
42秒前
777发布了新的文献求助10
45秒前
46秒前
可达鸭发布了新的文献求助30
47秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738565
求助须知:如何正确求助?哪些是违规求助? 3281918
关于积分的说明 10026959
捐赠科研通 2998717
什么是DOI,文献DOI怎么找? 1645425
邀请新用户注册赠送积分活动 782788
科研通“疑难数据库(出版商)”最低求助积分说明 749931