An improved NSGA-III algorithm based on distance dominance relation for many-objective optimization

算法 关系(数据库) 趋同(经济学) 数学优化 数学 优势(遗传学) 进化算法 帕累托原理 多目标优化 计算机科学 数据挖掘 经济增长 生物化学 基因 经济 化学
作者
Qinghua Gu,Qingsong Xu,Xuexian Li
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:207: 117738-117738 被引量:21
标识
DOI:10.1016/j.eswa.2022.117738
摘要

There are two main aspects of research in many-objective optimization algorithm, namely, convergence and diversity. However, it is difficult for original algorithms to maintain the diversity of solutions in the high-dimensional objective space. The NSGA-III algorithm is an advanced algorithm based on Pareto dominance. In the high-dimensional objective space, the diversity maintenance of this algorithm is obviously lacking. In order to enhance the diversity of algorithms in many-objective optimization problems, a new distance dominance relation is proposed in this paper. First, in order to ensure the convergence of the algorithm, the distance dominance relation calculates the distance from the candidate solution to the ideal point as the fitness value, and selects the candidate solution with good fitness value as the non-dominant solution. Then, in order to enhance the diversity of the algorithm, the distance dominance relation sets each candidate solution to have the same niche and ensures that only one optimal solution is retained in the same territory. Finally, the NSGA- III algorithm is improved based on the proposed distance dominance relation. On the DTLZ and MaF test problems with 3, 5, 8, 10, and 15 objectives, the improved algorithm is compared with seven commonly used algorithms. The experimental results show that the improved algorithm is highly competitive and can significantly enhance the diversity of the algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Teragous发布了新的文献求助10
刚刚
SciGPT应助lilongcheng采纳,获得10
1秒前
1秒前
菌菌完成签到,获得积分10
1秒前
2秒前
大云豆应助欣欣采纳,获得30
2秒前
量子星尘发布了新的文献求助10
4秒前
玛卡巴卡发布了新的文献求助10
4秒前
李大椰完成签到,获得积分10
5秒前
圆又圆发布了新的文献求助10
5秒前
6秒前
鹅糖发布了新的文献求助10
6秒前
Chloe完成签到,获得积分10
7秒前
领导范儿应助rick3455采纳,获得10
7秒前
冉冉完成签到,获得积分10
8秒前
牧星河完成签到,获得积分10
8秒前
gkads完成签到,获得积分10
9秒前
R7完成签到 ,获得积分10
9秒前
白枫发布了新的文献求助10
10秒前
问水完成签到,获得积分10
11秒前
微笑亿先完成签到,获得积分10
11秒前
Maestro_S应助科研通管家采纳,获得10
11秒前
wanci应助科研通管家采纳,获得10
11秒前
脑洞疼应助科研通管家采纳,获得10
11秒前
11秒前
xzn1123应助科研通管家采纳,获得10
11秒前
李大椰发布了新的文献求助10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
田様应助科研通管家采纳,获得10
11秒前
11秒前
传奇3应助科研通管家采纳,获得10
11秒前
Orange应助科研通管家采纳,获得10
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
12秒前
浮游应助科研通管家采纳,获得10
12秒前
bkagyin应助科研通管家采纳,获得10
12秒前
12秒前
SciGPT应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478020
求助须知:如何正确求助?哪些是违规求助? 4579793
关于积分的说明 14370768
捐赠科研通 4508017
什么是DOI,文献DOI怎么找? 2470377
邀请新用户注册赠送积分活动 1457252
关于科研通互助平台的介绍 1431244