An improved NSGA-III algorithm based on distance dominance relation for many-objective optimization

算法 关系(数据库) 趋同(经济学) 数学优化 数学 优势(遗传学) 进化算法 帕累托原理 多目标优化 计算机科学 数据挖掘 经济增长 生物化学 基因 经济 化学
作者
Qinghua Gu,Qingsong Xu,Xuexian Li
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:207: 117738-117738 被引量:21
标识
DOI:10.1016/j.eswa.2022.117738
摘要

There are two main aspects of research in many-objective optimization algorithm, namely, convergence and diversity. However, it is difficult for original algorithms to maintain the diversity of solutions in the high-dimensional objective space. The NSGA-III algorithm is an advanced algorithm based on Pareto dominance. In the high-dimensional objective space, the diversity maintenance of this algorithm is obviously lacking. In order to enhance the diversity of algorithms in many-objective optimization problems, a new distance dominance relation is proposed in this paper. First, in order to ensure the convergence of the algorithm, the distance dominance relation calculates the distance from the candidate solution to the ideal point as the fitness value, and selects the candidate solution with good fitness value as the non-dominant solution. Then, in order to enhance the diversity of the algorithm, the distance dominance relation sets each candidate solution to have the same niche and ensures that only one optimal solution is retained in the same territory. Finally, the NSGA- III algorithm is improved based on the proposed distance dominance relation. On the DTLZ and MaF test problems with 3, 5, 8, 10, and 15 objectives, the improved algorithm is compared with seven commonly used algorithms. The experimental results show that the improved algorithm is highly competitive and can significantly enhance the diversity of the algorithm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Liens发布了新的文献求助10
刚刚
Jmuran完成签到 ,获得积分10
1秒前
YangLi完成签到,获得积分10
1秒前
len发布了新的文献求助10
1秒前
2秒前
爆米花应助光明磊落采纳,获得10
2秒前
隐形曼青应助马茹采纳,获得10
2秒前
笑点低钥匙完成签到,获得积分10
3秒前
无敌科研大王完成签到,获得积分10
3秒前
5秒前
香蕉觅云应助Yyyyy采纳,获得10
5秒前
6秒前
hhdong发布了新的文献求助10
6秒前
6秒前
共享精神应助翁家毅采纳,获得30
7秒前
李梦完成签到,获得积分20
7秒前
小白应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
今后应助科研通管家采纳,获得10
7秒前
yyzhou应助科研通管家采纳,获得10
7秒前
思源应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
玄风应助科研通管家采纳,获得10
7秒前
无花果应助科研通管家采纳,获得100
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得30
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
8秒前
niNe3YUE应助科研通管家采纳,获得10
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
打打应助YuLu采纳,获得10
8秒前
玄风应助科研通管家采纳,获得10
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601676
求助须知:如何正确求助?哪些是违规求助? 4687108
关于积分的说明 14847661
捐赠科研通 4681810
什么是DOI,文献DOI怎么找? 2539466
邀请新用户注册赠送积分活动 1506355
关于科研通互助平台的介绍 1471335