Enhancing Dispatchability of Lithium-Ion Battery Sources in Integrated Energy-Transportation Systems With Feasible Power Characterization

电池(电) 计算机科学 锂离子电池 功率(物理) 线性化 数学优化 数学 物理 非线性系统 量子力学
作者
Yuxuan Gu,Yuanbo Chen,Jianxiao Wang,Wei Xiao,Qixin Chen
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (2): 1997-2007 被引量:8
标识
DOI:10.1109/tii.2022.3195731
摘要

Sizeable lithium-ion battery (LIB) sources in the transportation and power sectors provide a promising approach to alleviate the increasing volatility in energy systems. To dispatch LIBs durably and safely, operators need to estimate the battery power characteristics, which are commonly derived from external states of the battery obtained by empirical models. However, the internal states that play a decisive role are rarely considered. In this work, the power characterization is based on an interpretable and analytical electrochemical model. In addition to external states, internal states, including Li-ion concentrations, side reaction rates, and the energy conversion efficiency, are considered in the characterization. Since the dispatch time interval is usually longer than the time resolution of the battery model, an optimization-based approach taking the idea of model predictive control is designed for efficient calculation. A linearization scheme is proposed to embed power characteristics into the optimization-based dispatch of an integrated energy-transportation system with low complexity. Case studies on LiNCM and LiFePO $_{4}$ batteries in different temperatures are conducted. The calculation of power characteristics takes about two minutes. By considering power characteristics, the energy conversion efficiency of the dispatched battery can be increased by 5%–15%. At the same time, the degradation stress and heat generation can be reduced to around one-fourth of the naïve case.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
调皮的沛萍完成签到,获得积分20
1秒前
科研通AI5应助Distance采纳,获得10
1秒前
Erick发布了新的文献求助10
2秒前
嘻嘻哈哈完成签到 ,获得积分10
2秒前
阿北发布了新的文献求助10
3秒前
3秒前
完美世界应助yan采纳,获得10
3秒前
乐乐应助高梦芮采纳,获得10
3秒前
3秒前
小颜完成签到,获得积分20
3秒前
认真的迎南完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
香蕉觅云应助木杉采纳,获得10
6秒前
luxlili完成签到,获得积分10
6秒前
maox1aoxin应助Adian采纳,获得50
7秒前
我是老大应助ttu采纳,获得10
8秒前
bkagyin应助lhh采纳,获得10
8秒前
情怀应助细胞呵呵采纳,获得10
8秒前
sky完成签到 ,获得积分10
9秒前
李科研发布了新的文献求助10
9秒前
3D发布了新的文献求助10
10秒前
charm完成签到,获得积分10
10秒前
10秒前
Lucas应助忐忑的尔容采纳,获得10
10秒前
11秒前
忧郁衬衫发布了新的文献求助20
11秒前
万万完成签到 ,获得积分10
11秒前
啵啵脆完成签到,获得积分10
12秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
科目三应助verbal2005采纳,获得10
13秒前
zhanghan完成签到,获得积分10
13秒前
张靖松完成签到,获得积分10
14秒前
14秒前
14秒前
科研通AI5应助du采纳,获得10
15秒前
SciGPT应助累死的牛采纳,获得20
15秒前
小蘑菇应助AnasYusuf采纳,获得10
15秒前
李科研完成签到,获得积分10
15秒前
科研通AI5应助清新的Q采纳,获得10
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3660003
求助须知:如何正确求助?哪些是违规求助? 3221343
关于积分的说明 9740065
捐赠科研通 2930748
什么是DOI,文献DOI怎么找? 1604601
邀请新用户注册赠送积分活动 757316
科研通“疑难数据库(出版商)”最低求助积分说明 734384