Multi-Modality Image Fusion and Object Detection Based on Semantic Information

计算机科学 人工智能 冗余(工程) 融合 图像融合 模式识别(心理学) 任务(项目管理) 人工神经网络 目标检测 光学(聚焦) 计算机视觉 图像(数学) 光学 物理 哲学 操作系统 语言学 经济 管理
作者
Yong Liu,Xin Zhou,Wei Zhong
出处
期刊:Entropy [Multidisciplinary Digital Publishing Institute]
卷期号:25 (5): 718-718 被引量:4
标识
DOI:10.3390/e25050718
摘要

Infrared and visible image fusion (IVIF) aims to provide informative images by combining complementary information from different sensors. Existing IVIF methods based on deep learning focus on strengthening the network with increasing depth but often ignore the importance of transmission characteristics, resulting in the degradation of important information. In addition, while many methods use various loss functions or fusion rules to retain complementary features of both modes, the fusion results often retain redundant or even invalid information.In order to accurately extract the effective information from both infrared images and visible light images without omission or redundancy, and to better serve downstream tasks such as target detection with the fused image, we propose a multi-level structure search attention fusion network based on semantic information guidance, which realizes the fusion of infrared and visible images in an end-to-end way. Our network has two main contributions: the use of neural architecture search (NAS) and the newly designed multilevel adaptive attention module (MAAB). These methods enable our network to retain the typical characteristics of the two modes while removing useless information for the detection task in the fusion results. In addition, our loss function and joint training method can establish a reliable relationship between the fusion network and subsequent detection tasks. Extensive experiments on the new dataset (M3FD) show that our fusion method has achieved advanced performance in both subjective and objective evaluations, and the mAP in the object detection task is improved by 0.5% compared to the second-best method (FusionGAN).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助幸福大白采纳,获得10
刚刚
搜集达人应助幸福大白采纳,获得10
刚刚
刚刚
刚刚
刚刚
1412应助科研通管家采纳,获得10
1秒前
良辰应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
1秒前
Kevin应助科研通管家采纳,获得20
1秒前
ATLI应助科研通管家采纳,获得20
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
良辰应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
1412应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
Priscilla应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
良辰应助科研通管家采纳,获得10
2秒前
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
2秒前
3秒前
动漫大师发布了新的文献求助10
4秒前
4秒前
爆米花应助俊逸的凡柔采纳,获得10
5秒前
医痞子发布了新的文献求助10
8秒前
ssnha完成签到 ,获得积分10
9秒前
DY完成签到,获得积分10
10秒前
动漫大师发布了新的文献求助10
10秒前
SPLjoker完成签到 ,获得积分10
11秒前
11秒前
研友_Z7Xdl8发布了新的文献求助10
14秒前
16秒前
科研通AI5应助qiu采纳,获得10
19秒前
moony完成签到 ,获得积分10
19秒前
Su73完成签到,获得积分10
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673942
求助须知:如何正确求助?哪些是违规求助? 3229353
关于积分的说明 9785517
捐赠科研通 2939954
什么是DOI,文献DOI怎么找? 1611513
邀请新用户注册赠送积分活动 760978
科研通“疑难数据库(出版商)”最低求助积分说明 736344