Association between anemia and sarcopenia among Chinese elderly: A cross-sectional study based on the China health and retirement longitudinal study

肌萎缩 医学 贫血 横断面研究 优势比 逻辑回归 纵向研究 人口 老年学 内科学 物理疗法 人口学 环境卫生 病理 社会学
作者
Senjie Dai,Shihui Wang,Yujing He,Chenglong Dai,Jiahui Yu,Xueqiang Ma
出处
期刊:Experimental Gerontology [Elsevier]
卷期号:177: 112183-112183 被引量:11
标识
DOI:10.1016/j.exger.2023.112183
摘要

Evidence regarding the association between anemia and sarcopenia in the elderly population is limited and controversial. The purpose of this study was to investigate the association between anemia and sarcopenia in Chinese elderly.The cross-sectional study used the third wave of data from the China Longitudinal Study of Health and Retirement (CHARLS). Participants were classified as sarcopenic versus non-sarcopenic according to the guidelines developed by the Asian Working Group for Sarcopenia (AWGS) 2019. Meanwhile, participants were defined for anemia using World Health Organization criteria. Logistic regression models were conducted to assess the association between anemia and sarcopenia. Odds ratios (OR) were reported to indicate the strength of the association.A total of 5016 participants were included in the cross-sectional analysis. The overall prevalence of sarcopenia in this population was 18.3 %. After adjusting for all potential risk factors, anemia and sarcopenia were independently associated (OR = 1.43, 95 % CI 1.15-1.77, P = 0.001). In terms of subgroups, the association of anemia with sarcopenia was also significant in people over 71 years of age (OR = 1.93, 95 % CI 1.40-2.66, P < 0.001), women (OR = 1.48, 95 % CI 1.09-2,02, P = 0.012), rural residents (OR = 1.56, 95 % CI 1.24-1.97, P < 0.001), as well as in people with low education (OR = 1.50, 95 % CI 1.20-1.89, P < 0.001).Anemia is an independent risk factor for sarcopenia among elderly Chinese population.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Doudou完成签到,获得积分10
刚刚
1秒前
2秒前
chenhoe1212应助做好自己采纳,获得10
2秒前
2秒前
玄xuan发布了新的文献求助10
2秒前
xiuuu发布了新的文献求助10
3秒前
好名字发布了新的文献求助10
4秒前
moffy发布了新的文献求助10
4秒前
科研通AI6应助聪明的大叔采纳,获得10
4秒前
华仔应助清脆的一一采纳,获得10
4秒前
FashionBoy应助高高以松采纳,获得10
5秒前
Naive发布了新的文献求助10
5秒前
percy发布了新的文献求助10
5秒前
乐乐应助Hui采纳,获得30
6秒前
易渤超发布了新的文献求助30
6秒前
尉浩泽完成签到,获得积分10
7秒前
嘿嘿发布了新的文献求助10
7秒前
无心。发布了新的文献求助10
7秒前
小巧的风华完成签到,获得积分20
7秒前
pyy发布了新的文献求助10
8秒前
cc发布了新的文献求助10
9秒前
陈麦发布了新的文献求助10
9秒前
9秒前
归尘发布了新的文献求助10
9秒前
10秒前
小二郎应助Riggle G采纳,获得10
10秒前
10秒前
天天快乐应助ht采纳,获得10
10秒前
10秒前
二依完成签到,获得积分10
10秒前
好名字完成签到,获得积分20
11秒前
科研通AI6应助尉浩泽采纳,获得10
11秒前
英俊的铭应助Zkxxxx采纳,获得10
11秒前
11秒前
12秒前
NexusExplorer应助arizaki7采纳,获得10
13秒前
善学以致用应助arizaki7采纳,获得10
13秒前
英姑应助arizaki7采纳,获得10
13秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615047
求助须知:如何正确求助?哪些是违规求助? 4699915
关于积分的说明 14905878
捐赠科研通 4740995
什么是DOI,文献DOI怎么找? 2547893
邀请新用户注册赠送积分活动 1511680
关于科研通互助平台的介绍 1473726