RPI-CapsuleGAN: Predicting RNA-protein interactions through an interpretable generative adversarial capsule network

生成语法 人工智能 生成对抗网络 构造(python库) 计算机科学 特征(语言学) 特征选择 机器学习 块(置换群论) 模式识别(心理学) 数据挖掘 数学 深度学习 语言学 哲学 几何学 程序设计语言
作者
Yifei Wang,Xue Wang,Cheng Chen,Hongli Gao,Adil Salhi,Xin Gao,Bin Yu
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:141: 109626-109626 被引量:8
标识
DOI:10.1016/j.patcog.2023.109626
摘要

RNA-protein interactions (RPI) play a crucial regulatory role in cellular physiological processes. The study and prediction of RPIs can be insightful for exploring disease mechanisms and drug target design. Traditional RPI prediction methods relied mainly on tedious and expensive biological experiments, and there is an increasing interest in developing more cost-effective computational methods to predict RPIs. This work proposes an interpretable RPI-CapsuleGAN method for RPI prediction based on a generative adversarial capsule network with a convolutional block attention module. First, RPI-CapsuleGAN extracts and fuses multiple features to characterize RNA and protein sequences. Subsequently, the elastic net feature selection method is used to retain features that are highly informative to RPI prediction. Finally, we introduce a convolutional attention mechanism into the generative adversarial capsule network for the first time in order to construct the RPI prediction framework, which is shown to improve the model feature learning of interpretable and expression ability, and effectively solves the problem of the disappearance of the model spatial structure hierarchy. Based on a five-fold cross-validation test, the prediction accuracy of the RPI-CapsuleGAN method reaches 97.1%, 88.8%, 92.5%, 97.3%, and 87.8% for datasets RPI488, RPI369, RPI2241, RPI1807, and RPI1446. The RPI-CapsuleGAN method has higher accuracy than state-of-the-art RPI prediction methods that use the same datasets. In the test dataset NPInter227 constructed in this paper, five groups of test sets are composed of positive samples and five groups of negative samples, the prediction accuracy reaches 97.38%, 96.48%, 97.38%, 97.81%, and 97.15%, respectively, outperforming other mainstream deep learning algorithms. In addition, RPI-CapsuleGAN obtained better results for the prediction of independent test datasets. Extensive experiments detailed here show that RPI-CapsuleGAN can provide an efficient, accurate, and stable method for RPI prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
贝肯尼完成签到,获得积分10
1秒前
1秒前
Ava应助昆医周杰伦采纳,获得10
1秒前
鸽子完成签到,获得积分10
1秒前
cherish完成签到,获得积分10
1秒前
chigga发布了新的文献求助10
2秒前
nini发布了新的文献求助10
2秒前
Jasper应助陈嘻嘻嘻嘻采纳,获得10
2秒前
3秒前
Shuey完成签到,获得积分10
3秒前
3秒前
4秒前
Jerry20184发布了新的文献求助10
4秒前
QC发布了新的文献求助10
5秒前
FashionBoy应助含糊的泥猴桃采纳,获得10
5秒前
小小高完成签到 ,获得积分10
5秒前
于誉发布了新的文献求助10
5秒前
7秒前
英姑应助壮观的擎采纳,获得10
7秒前
8秒前
8秒前
yookia应助dahuang采纳,获得10
8秒前
思源应助chigga采纳,获得10
8秒前
惊天大幂幂完成签到,获得积分10
9秒前
9秒前
9秒前
bkagyin应助huangqi采纳,获得10
9秒前
YCG完成签到 ,获得积分10
9秒前
昆医周杰伦完成签到,获得积分10
10秒前
10秒前
冰阔落发布了新的文献求助10
10秒前
12秒前
13秒前
13秒前
萧萧萧完成签到,获得积分10
13秒前
14秒前
stuckinrain发布了新的文献求助10
14秒前
木木发布了新的文献求助10
15秒前
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954947
求助须知:如何正确求助?哪些是违规求助? 3501093
关于积分的说明 11101851
捐赠科研通 3231470
什么是DOI,文献DOI怎么找? 1786438
邀请新用户注册赠送积分活动 870058
科研通“疑难数据库(出版商)”最低求助积分说明 801798