RPI-CapsuleGAN: Predicting RNA-protein interactions through an interpretable generative adversarial capsule network

生成语法 人工智能 生成对抗网络 构造(python库) 计算机科学 特征(语言学) 特征选择 机器学习 块(置换群论) 模式识别(心理学) 数据挖掘 数学 深度学习 语言学 哲学 几何学 程序设计语言
作者
Yifei Wang,Xue Wang,Cheng Chen,Hongli Gao,Adil Salhi,Xin Gao,Bin Yu
出处
期刊:Pattern Recognition [Elsevier]
卷期号:141: 109626-109626 被引量:8
标识
DOI:10.1016/j.patcog.2023.109626
摘要

RNA-protein interactions (RPI) play a crucial regulatory role in cellular physiological processes. The study and prediction of RPIs can be insightful for exploring disease mechanisms and drug target design. Traditional RPI prediction methods relied mainly on tedious and expensive biological experiments, and there is an increasing interest in developing more cost-effective computational methods to predict RPIs. This work proposes an interpretable RPI-CapsuleGAN method for RPI prediction based on a generative adversarial capsule network with a convolutional block attention module. First, RPI-CapsuleGAN extracts and fuses multiple features to characterize RNA and protein sequences. Subsequently, the elastic net feature selection method is used to retain features that are highly informative to RPI prediction. Finally, we introduce a convolutional attention mechanism into the generative adversarial capsule network for the first time in order to construct the RPI prediction framework, which is shown to improve the model feature learning of interpretable and expression ability, and effectively solves the problem of the disappearance of the model spatial structure hierarchy. Based on a five-fold cross-validation test, the prediction accuracy of the RPI-CapsuleGAN method reaches 97.1%, 88.8%, 92.5%, 97.3%, and 87.8% for datasets RPI488, RPI369, RPI2241, RPI1807, and RPI1446. The RPI-CapsuleGAN method has higher accuracy than state-of-the-art RPI prediction methods that use the same datasets. In the test dataset NPInter227 constructed in this paper, five groups of test sets are composed of positive samples and five groups of negative samples, the prediction accuracy reaches 97.38%, 96.48%, 97.38%, 97.81%, and 97.15%, respectively, outperforming other mainstream deep learning algorithms. In addition, RPI-CapsuleGAN obtained better results for the prediction of independent test datasets. Extensive experiments detailed here show that RPI-CapsuleGAN can provide an efficient, accurate, and stable method for RPI prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助孙奕采纳,获得10
1秒前
1秒前
HYH发布了新的文献求助20
1秒前
Rinohalt发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
3秒前
领导范儿应助通~采纳,获得10
3秒前
3秒前
fufufu123发布了新的文献求助10
3秒前
英姑应助猪猪hero采纳,获得10
3秒前
励志小薛发布了新的文献求助10
4秒前
怕孤独的从雪完成签到,获得积分20
4秒前
4秒前
joyce完成签到,获得积分10
4秒前
5秒前
xiaotian_fan发布了新的文献求助10
6秒前
sunlihao完成签到,获得积分10
6秒前
123发布了新的文献求助10
7秒前
悦耳水之发布了新的文献求助10
7秒前
garyaa发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
9秒前
研友_LMNjkn完成签到,获得积分10
11秒前
Liu完成签到,获得积分10
11秒前
11秒前
夏日天空完成签到,获得积分10
12秒前
CodeCraft应助lkc采纳,获得10
12秒前
cheng发布了新的文献求助10
12秒前
Hello应助科研小白菜采纳,获得10
13秒前
Eve发布了新的文献求助10
13秒前
花见月开完成签到,获得积分10
14秒前
思源应助uu采纳,获得10
14秒前
共享精神应助喜悦成威采纳,获得20
15秒前
赵赵赵发布了新的文献求助10
15秒前
打打应助特兰克斯采纳,获得10
16秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794