RPI-CapsuleGAN: Predicting RNA-protein interactions through an interpretable generative adversarial capsule network

生成语法 人工智能 生成对抗网络 构造(python库) 计算机科学 特征(语言学) 特征选择 机器学习 块(置换群论) 模式识别(心理学) 数据挖掘 数学 深度学习 语言学 哲学 几何学 程序设计语言
作者
Yifei Wang,Xue Wang,Cheng Chen,Hongli Gao,Adil Salhi,Xin Gao,Bin Yu
出处
期刊:Pattern Recognition [Elsevier]
卷期号:141: 109626-109626 被引量:29
标识
DOI:10.1016/j.patcog.2023.109626
摘要

RNA-protein interactions (RPI) play a crucial regulatory role in cellular physiological processes. The study and prediction of RPIs can be insightful for exploring disease mechanisms and drug target design. Traditional RPI prediction methods relied mainly on tedious and expensive biological experiments, and there is an increasing interest in developing more cost-effective computational methods to predict RPIs. This work proposes an interpretable RPI-CapsuleGAN method for RPI prediction based on a generative adversarial capsule network with a convolutional block attention module. First, RPI-CapsuleGAN extracts and fuses multiple features to characterize RNA and protein sequences. Subsequently, the elastic net feature selection method is used to retain features that are highly informative to RPI prediction. Finally, we introduce a convolutional attention mechanism into the generative adversarial capsule network for the first time in order to construct the RPI prediction framework, which is shown to improve the model feature learning of interpretable and expression ability, and effectively solves the problem of the disappearance of the model spatial structure hierarchy. Based on a five-fold cross-validation test, the prediction accuracy of the RPI-CapsuleGAN method reaches 97.1%, 88.8%, 92.5%, 97.3%, and 87.8% for datasets RPI488, RPI369, RPI2241, RPI1807, and RPI1446. The RPI-CapsuleGAN method has higher accuracy than state-of-the-art RPI prediction methods that use the same datasets. In the test dataset NPInter227 constructed in this paper, five groups of test sets are composed of positive samples and five groups of negative samples, the prediction accuracy reaches 97.38%, 96.48%, 97.38%, 97.81%, and 97.15%, respectively, outperforming other mainstream deep learning algorithms. In addition, RPI-CapsuleGAN obtained better results for the prediction of independent test datasets. Extensive experiments detailed here show that RPI-CapsuleGAN can provide an efficient, accurate, and stable method for RPI prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123456发布了新的文献求助10
刚刚
miemieyang完成签到,获得积分10
刚刚
CodeCraft应助ZSC采纳,获得10
刚刚
1秒前
生动娩发布了新的文献求助100
1秒前
XuanQi完成签到,获得积分10
2秒前
aa发布了新的文献求助10
2秒前
米米发布了新的文献求助10
3秒前
世隐完成签到,获得积分10
3秒前
5秒前
7秒前
8秒前
8秒前
斯文败类应助米米采纳,获得10
9秒前
在水一方应助wuqs采纳,获得10
9秒前
9秒前
11秒前
11秒前
栖风完成签到,获得积分10
11秒前
科目三应助晓晓采纳,获得10
12秒前
WJF发布了新的文献求助10
13秒前
13秒前
NexusExplorer应助科研通管家采纳,获得10
13秒前
13秒前
fiife应助科研通管家采纳,获得10
13秒前
大个应助科研通管家采纳,获得10
13秒前
深情安青应助科研通管家采纳,获得10
13秒前
13秒前
fiife应助科研通管家采纳,获得10
13秒前
完美世界应助科研通管家采纳,获得10
13秒前
无极微光应助科研通管家采纳,获得20
13秒前
BowieHuang应助科研通管家采纳,获得10
13秒前
BowieHuang应助科研通管家采纳,获得10
13秒前
领导范儿应助科研通管家采纳,获得10
13秒前
CipherSage应助科研通管家采纳,获得10
13秒前
无花果应助科研通管家采纳,获得10
13秒前
13秒前
14秒前
hayek完成签到,获得积分10
14秒前
Technal完成签到,获得积分20
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599407
求助须知:如何正确求助?哪些是违规求助? 4685010
关于积分的说明 14837502
捐赠科研通 4668037
什么是DOI,文献DOI怎么找? 2537906
邀请新用户注册赠送积分活动 1505398
关于科研通互助平台的介绍 1470783