RPI-CapsuleGAN: Predicting RNA-protein interactions through an interpretable generative adversarial capsule network

生成语法 人工智能 生成对抗网络 构造(python库) 计算机科学 特征(语言学) 特征选择 机器学习 块(置换群论) 模式识别(心理学) 数据挖掘 数学 深度学习 语言学 哲学 几何学 程序设计语言
作者
Yifei Wang,Xue Wang,Cheng Chen,Hongli Gao,Adil Salhi,Xin Gao,Bin Yu
出处
期刊:Pattern Recognition [Elsevier]
卷期号:141: 109626-109626 被引量:8
标识
DOI:10.1016/j.patcog.2023.109626
摘要

RNA-protein interactions (RPI) play a crucial regulatory role in cellular physiological processes. The study and prediction of RPIs can be insightful for exploring disease mechanisms and drug target design. Traditional RPI prediction methods relied mainly on tedious and expensive biological experiments, and there is an increasing interest in developing more cost-effective computational methods to predict RPIs. This work proposes an interpretable RPI-CapsuleGAN method for RPI prediction based on a generative adversarial capsule network with a convolutional block attention module. First, RPI-CapsuleGAN extracts and fuses multiple features to characterize RNA and protein sequences. Subsequently, the elastic net feature selection method is used to retain features that are highly informative to RPI prediction. Finally, we introduce a convolutional attention mechanism into the generative adversarial capsule network for the first time in order to construct the RPI prediction framework, which is shown to improve the model feature learning of interpretable and expression ability, and effectively solves the problem of the disappearance of the model spatial structure hierarchy. Based on a five-fold cross-validation test, the prediction accuracy of the RPI-CapsuleGAN method reaches 97.1%, 88.8%, 92.5%, 97.3%, and 87.8% for datasets RPI488, RPI369, RPI2241, RPI1807, and RPI1446. The RPI-CapsuleGAN method has higher accuracy than state-of-the-art RPI prediction methods that use the same datasets. In the test dataset NPInter227 constructed in this paper, five groups of test sets are composed of positive samples and five groups of negative samples, the prediction accuracy reaches 97.38%, 96.48%, 97.38%, 97.81%, and 97.15%, respectively, outperforming other mainstream deep learning algorithms. In addition, RPI-CapsuleGAN obtained better results for the prediction of independent test datasets. Extensive experiments detailed here show that RPI-CapsuleGAN can provide an efficient, accurate, and stable method for RPI prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
噼里啪啦发布了新的文献求助10
刚刚
一二完成签到,获得积分10
1秒前
炸毛胡图图完成签到 ,获得积分10
1秒前
piaopiao1122发布了新的文献求助10
1秒前
在水一方应助DONGLK采纳,获得30
2秒前
皮卡pika完成签到,获得积分10
2秒前
桐桐应助mz采纳,获得10
3秒前
顾矜应助沈佳琪采纳,获得10
3秒前
3秒前
张张完成签到,获得积分10
4秒前
tan90完成签到,获得积分10
4秒前
7秒前
9秒前
piaopiao1122完成签到,获得积分10
9秒前
9秒前
ron完成签到,获得积分10
11秒前
大鱼完成签到,获得积分10
11秒前
11秒前
DONGLK完成签到,获得积分10
13秒前
诱阙寰完成签到,获得积分10
13秒前
mz发布了新的文献求助10
15秒前
sqrt138应助甜甜问儿采纳,获得10
15秒前
研友_VZG7GZ应助甜甜问儿采纳,获得10
15秒前
林林完成签到,获得积分10
16秒前
17秒前
在水一方应助科研通管家采纳,获得10
18秒前
思源应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
Owen应助科研通管家采纳,获得30
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
Ella给Ella的求助进行了留言
19秒前
19秒前
19秒前
fxx2021发布了新的文献求助10
19秒前
牛无施完成签到 ,获得积分10
19秒前
善学以致用应助开朗的驳采纳,获得10
19秒前
EMMACao完成签到,获得积分10
19秒前
youwenjing11完成签到 ,获得积分10
20秒前
薰硝壤应助小九不太乖采纳,获得60
21秒前
小二郎应助鞑靼采纳,获得10
22秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134881
求助须知:如何正确求助?哪些是违规求助? 2785770
关于积分的说明 7774093
捐赠科研通 2441601
什么是DOI,文献DOI怎么找? 1298038
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825