亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

RPI-CapsuleGAN: Predicting RNA-protein interactions through an interpretable generative adversarial capsule network

生成语法 人工智能 生成对抗网络 构造(python库) 计算机科学 特征(语言学) 特征选择 机器学习 块(置换群论) 模式识别(心理学) 数据挖掘 数学 深度学习 语言学 哲学 几何学 程序设计语言
作者
Yifei Wang,Xue Wang,Cheng Chen,Hongli Gao,Adil Salhi,Xin Gao,Bin Yu
出处
期刊:Pattern Recognition [Elsevier]
卷期号:141: 109626-109626 被引量:16
标识
DOI:10.1016/j.patcog.2023.109626
摘要

RNA-protein interactions (RPI) play a crucial regulatory role in cellular physiological processes. The study and prediction of RPIs can be insightful for exploring disease mechanisms and drug target design. Traditional RPI prediction methods relied mainly on tedious and expensive biological experiments, and there is an increasing interest in developing more cost-effective computational methods to predict RPIs. This work proposes an interpretable RPI-CapsuleGAN method for RPI prediction based on a generative adversarial capsule network with a convolutional block attention module. First, RPI-CapsuleGAN extracts and fuses multiple features to characterize RNA and protein sequences. Subsequently, the elastic net feature selection method is used to retain features that are highly informative to RPI prediction. Finally, we introduce a convolutional attention mechanism into the generative adversarial capsule network for the first time in order to construct the RPI prediction framework, which is shown to improve the model feature learning of interpretable and expression ability, and effectively solves the problem of the disappearance of the model spatial structure hierarchy. Based on a five-fold cross-validation test, the prediction accuracy of the RPI-CapsuleGAN method reaches 97.1%, 88.8%, 92.5%, 97.3%, and 87.8% for datasets RPI488, RPI369, RPI2241, RPI1807, and RPI1446. The RPI-CapsuleGAN method has higher accuracy than state-of-the-art RPI prediction methods that use the same datasets. In the test dataset NPInter227 constructed in this paper, five groups of test sets are composed of positive samples and five groups of negative samples, the prediction accuracy reaches 97.38%, 96.48%, 97.38%, 97.81%, and 97.15%, respectively, outperforming other mainstream deep learning algorithms. In addition, RPI-CapsuleGAN obtained better results for the prediction of independent test datasets. Extensive experiments detailed here show that RPI-CapsuleGAN can provide an efficient, accurate, and stable method for RPI prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
punch发布了新的文献求助10
5秒前
punch完成签到,获得积分10
11秒前
12秒前
13秒前
科研剧中人完成签到,获得积分10
15秒前
oscar完成签到,获得积分10
20秒前
CodeCraft应助科研通管家采纳,获得10
23秒前
ZanE完成签到,获得积分10
24秒前
40秒前
曹健生完成签到,获得积分20
52秒前
周周完成签到,获得积分10
53秒前
天凉王破完成签到 ,获得积分10
1分钟前
科研通AI6应助GL采纳,获得10
1分钟前
曹健生发布了新的文献求助10
1分钟前
1分钟前
科研通AI6应助lucky采纳,获得10
2分钟前
天天快乐应助科研通管家采纳,获得10
2分钟前
二三完成签到,获得积分10
2分钟前
2分钟前
2分钟前
美满尔蓝完成签到,获得积分10
2分钟前
youyu发布了新的文献求助10
2分钟前
2分钟前
Ollm发布了新的文献求助30
2分钟前
科研通AI6应助youyu采纳,获得10
2分钟前
3分钟前
3分钟前
多喝岩浆发布了新的文献求助10
3分钟前
3分钟前
多喝岩浆完成签到,获得积分10
3分钟前
科研通AI6应助多喝岩浆采纳,获得10
3分钟前
4分钟前
程晓研完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得20
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
痞老板死磕蟹黄堡完成签到 ,获得积分10
4分钟前
Abdurrahman完成签到,获得积分10
5分钟前
我是老大应助liuliu采纳,获得30
5分钟前
浮游应助hms采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
睡眠呼吸障碍治疗学 600
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488509
求助须知:如何正确求助?哪些是违规求助? 4587361
关于积分的说明 14413718
捐赠科研通 4518703
什么是DOI,文献DOI怎么找? 2475982
邀请新用户注册赠送积分活动 1461505
关于科研通互助平台的介绍 1434409