材料科学
电化学
离子键合
侧链
电解质
聚合物
载流子
离子电导率
纳米技术
化学工程
电极
离子
化学
光电子学
复合材料
有机化学
物理化学
工程类
作者
Garrett LeCroy,Camila Cendra,Tyler J. Quill,Maximilian Moser,Rawad K. Hallani,James F. Ponder,Kevin H. Stone,Stephen Dongmin Kang,Allen Yu-Lun Liang,Quentin Thiburce,Iain McCulloch,Frank C. Spano,Alexander Giovannitti,Alberto Salleo
出处
期刊:Materials horizons
[The Royal Society of Chemistry]
日期:2023-01-01
卷期号:10 (7): 2568-2578
被引量:10
摘要
Synthetic efforts have delivered a library of organic mixed ionic-electronic conductors (OMIECs) with high performance in electrochemical transistors. The most promising materials are redox-active conjugated polymers with hydrophilic side chains that reach high transconductances in aqueous electrolytes due to volumetric electrochemical charging. Current approaches to improve transconductance and device stability focus mostly on materials chemistry including backbone and side chain design. However, other parameters such as the initial microstructure and microstructural rearrangements during electrochemical charging are equally important and are influenced by backbone and side chain chemistry. In this study, we employ a polymer system to investigate the fundamental electrochemical charging mechanisms of OMIECs. We couple in situ electronic charge transport measurements and spectroelectrochemistry with ex situ X-ray scattering electrochemical charging experiments and find that polymer chains planarize during electrochemical charging. Our work shows that the most effective conductivity modulation is related to electrochemical accessibility of well-ordered, interconnected aggregates that host high mobility electronic charge carriers. Electrochemical stress cycling induces microstructural changes, but we find that these aggregates can largely maintain order, providing insights on the structural stability and reversibility of electrochemical charging in these systems. This work shows the importance of material design for creating OMIECs that undergo structural rearrangements to accommodate ions and electronic charge carriers during which percolating networks are formed for efficient electronic charge transport.
科研通智能强力驱动
Strongly Powered by AbleSci AI