Role of aggregates and microstructure of mixed-ionic–electronic-conductors on charge transport in electrochemical transistors

材料科学 电化学 离子键合 侧链 电解质 聚合物 载流子 离子电导率 纳米技术 化学工程 电极 离子 化学 光电子学 复合材料 有机化学 物理化学 工程类
作者
Garrett LeCroy,Camila Cendra,Tyler J. Quill,Maximilian Moser,Rawad K. Hallani,James F. Ponder,Kevin H. Stone,Stephen Dongmin Kang,Allen Yu-Lun Liang,Quentin Thiburce,Iain McCulloch,Frank C. Spano,Alexander Giovannitti,Alberto Salleo
出处
期刊:Materials horizons [Royal Society of Chemistry]
卷期号:10 (7): 2568-2578 被引量:10
标识
DOI:10.1039/d3mh00017f
摘要

Synthetic efforts have delivered a library of organic mixed ionic-electronic conductors (OMIECs) with high performance in electrochemical transistors. The most promising materials are redox-active conjugated polymers with hydrophilic side chains that reach high transconductances in aqueous electrolytes due to volumetric electrochemical charging. Current approaches to improve transconductance and device stability focus mostly on materials chemistry including backbone and side chain design. However, other parameters such as the initial microstructure and microstructural rearrangements during electrochemical charging are equally important and are influenced by backbone and side chain chemistry. In this study, we employ a polymer system to investigate the fundamental electrochemical charging mechanisms of OMIECs. We couple in situ electronic charge transport measurements and spectroelectrochemistry with ex situ X-ray scattering electrochemical charging experiments and find that polymer chains planarize during electrochemical charging. Our work shows that the most effective conductivity modulation is related to electrochemical accessibility of well-ordered, interconnected aggregates that host high mobility electronic charge carriers. Electrochemical stress cycling induces microstructural changes, but we find that these aggregates can largely maintain order, providing insights on the structural stability and reversibility of electrochemical charging in these systems. This work shows the importance of material design for creating OMIECs that undergo structural rearrangements to accommodate ions and electronic charge carriers during which percolating networks are formed for efficient electronic charge transport.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小池同学完成签到,获得积分10
刚刚
科研通AI6应助121311采纳,获得10
1秒前
Carolin发布了新的文献求助10
1秒前
谦让涵菡完成签到 ,获得积分10
2秒前
王耀武完成签到,获得积分10
2秒前
朴素念之完成签到,获得积分20
3秒前
3秒前
学术裁缝发布了新的文献求助10
3秒前
连冬萱发布了新的文献求助10
3秒前
ruby完成签到,获得积分10
3秒前
大魔王完成签到 ,获得积分10
4秒前
zhang完成签到,获得积分10
4秒前
YW发布了新的文献求助30
4秒前
xg发布了新的文献求助10
5秒前
6秒前
7秒前
8秒前
踏实绮露完成签到 ,获得积分10
8秒前
8秒前
iam小羊人完成签到,获得积分20
9秒前
9秒前
10秒前
失眠无声完成签到,获得积分10
10秒前
Jiang完成签到,获得积分10
11秒前
大模型应助称心的乘云采纳,获得10
11秒前
桐桐应助lw采纳,获得10
12秒前
12秒前
Hello应助连冬萱采纳,获得30
13秒前
13秒前
14秒前
Rain_BJ发布了新的文献求助10
14秒前
Carolin完成签到,获得积分10
15秒前
孙宗帅发布了新的文献求助10
15秒前
15秒前
iam小羊人发布了新的文献求助20
15秒前
16秒前
下雨天睡个懒觉完成签到,获得积分10
17秒前
丘比特应助强壮的美女采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
17秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226726
求助须知:如何正确求助?哪些是违规求助? 4398101
关于积分的说明 13688414
捐赠科研通 4262779
什么是DOI,文献DOI怎么找? 2339284
邀请新用户注册赠送积分活动 1336666
关于科研通互助平台的介绍 1292702