Synthetic data generation of vibration signals at different speed and load conditions of transmissions utilizing generative adversarial networks

计算机科学 背景(考古学) 可靠性(半导体) 合成数据 数据采集 传输(电信) 人工智能 数据收集 振动 动力传动系统 数据传输 机器学习 控制工程 扭矩 工程类 功率(物理) 计算机硬件 古生物学 统计 物理 热力学 数学 量子力学 生物 操作系统 电信
作者
Timo König,Fabian Wagner,Robin Bäßler,Markus Kley,Marcus Liebschner
出处
期刊:Tm-technisches Messen [Oldenbourg Wissenschaftsverlag]
卷期号:90 (10): 639-649
标识
DOI:10.1515/teme-2023-0001
摘要

Abstract Condition monitoring of machines and powertrain components is an essential part of ensuring reliability and product safety in many industries. The monitored machines and components are often divided into different condition classes as well as classified using machine learning methods. In order to enable classification with machine learning algorithms, the acquisition of a sufficient amount of data from each condition class is essential. In reality, the collection of data for faulty system states turns out to be much more difficult, therefore in many use cases balanced data sets are not available. However, when classifying faulty states, an identical number of data per class is of great importance. This problem can be counteracted with synthetic data generation. Generative Adversarial Networks (GAN) are a suitable approach to generate synthetic data based on real measured data. In most cases of synthetic data generation, different damage cases, e.g. from a transmission, are simulated, but a generation of synthetic data is not performed at different operating conditions. However, different speeds and torques are a reality when monitoring, as the drive systems operate under changing operating conditions. Therefore, in the context of this paper, synthetic data generation at different operating states is investigated in order to implement a condition monitoring system for good and bad system conditions which includes different operating states. So, vibration data is acquired at different operating conditions of a transmission on a drive test rig and relevant features are highlighted using a suitable signal pre-processing method. The features, caused by different operating conditions, can also be generated synthetically by GAN. Therefore, it is possible to achieve a similar classification accuracy by integrating synthetically generated data as with real data, which makes the synthetic data generation a viable solution for extending existing data sets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
ZZZ完成签到,获得积分10
1秒前
年轻的路人完成签到,获得积分20
1秒前
傻大发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
Lazarus_x发布了新的文献求助10
2秒前
小白完成签到,获得积分10
2秒前
2秒前
3秒前
Re完成签到 ,获得积分10
3秒前
Matt完成签到,获得积分10
3秒前
端庄不愁完成签到,获得积分10
4秒前
5秒前
6秒前
6秒前
坚定幻嫣发布了新的文献求助10
7秒前
7秒前
李健应助兔子采纳,获得10
7秒前
小蘑菇应助Qiang采纳,获得10
7秒前
乍染发布了新的文献求助10
8秒前
Lucas应助汎影采纳,获得10
8秒前
CAS发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
烟花应助tlx采纳,获得10
10秒前
11秒前
MJN发布了新的文献求助10
12秒前
caster1完成签到 ,获得积分10
13秒前
Matt发布了新的文献求助10
14秒前
lzt完成签到 ,获得积分10
14秒前
侠客发布了新的文献求助10
14秒前
14秒前
英俊的铭应助沉静的函采纳,获得10
15秒前
ZZZ发布了新的文献求助20
15秒前
大力的宝川关注了科研通微信公众号
15秒前
酷波er应助年轻的路人采纳,获得30
16秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124688
求助须知:如何正确求助?哪些是违规求助? 2775052
关于积分的说明 7725125
捐赠科研通 2430553
什么是DOI,文献DOI怎么找? 1291228
科研通“疑难数据库(出版商)”最低求助积分说明 622091
版权声明 600323