Synthetic data generation of vibration signals at different speed and load conditions of transmissions utilizing generative adversarial networks

计算机科学 背景(考古学) 可靠性(半导体) 合成数据 数据采集 传输(电信) 人工智能 数据收集 振动 动力传动系统 数据传输 机器学习 控制工程 扭矩 工程类 功率(物理) 计算机硬件 物理 古生物学 操作系统 统计 热力学 生物 电信 量子力学 数学
作者
Timo König,Fabian Wagner,Robin Bäßler,Markus Kley,Marcus Liebschner
出处
期刊:Tm-technisches Messen [R. Oldenbourg Verlag]
卷期号:90 (10): 639-649
标识
DOI:10.1515/teme-2023-0001
摘要

Abstract Condition monitoring of machines and powertrain components is an essential part of ensuring reliability and product safety in many industries. The monitored machines and components are often divided into different condition classes as well as classified using machine learning methods. In order to enable classification with machine learning algorithms, the acquisition of a sufficient amount of data from each condition class is essential. In reality, the collection of data for faulty system states turns out to be much more difficult, therefore in many use cases balanced data sets are not available. However, when classifying faulty states, an identical number of data per class is of great importance. This problem can be counteracted with synthetic data generation. Generative Adversarial Networks (GAN) are a suitable approach to generate synthetic data based on real measured data. In most cases of synthetic data generation, different damage cases, e.g. from a transmission, are simulated, but a generation of synthetic data is not performed at different operating conditions. However, different speeds and torques are a reality when monitoring, as the drive systems operate under changing operating conditions. Therefore, in the context of this paper, synthetic data generation at different operating states is investigated in order to implement a condition monitoring system for good and bad system conditions which includes different operating states. So, vibration data is acquired at different operating conditions of a transmission on a drive test rig and relevant features are highlighted using a suitable signal pre-processing method. The features, caused by different operating conditions, can also be generated synthetically by GAN. Therefore, it is possible to achieve a similar classification accuracy by integrating synthetically generated data as with real data, which makes the synthetic data generation a viable solution for extending existing data sets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助yang采纳,获得10
刚刚
xiaoming完成签到,获得积分10
刚刚
情怀应助rong采纳,获得10
1秒前
2秒前
一缕清风完成签到,获得积分10
2秒前
按住心动完成签到,获得积分10
4秒前
liangyuting发布了新的文献求助10
6秒前
7秒前
小蘑菇应助雪山飞龙采纳,获得10
8秒前
万晓博完成签到,获得积分20
9秒前
小龙发布了新的文献求助10
9秒前
zhang发布了新的文献求助10
12秒前
搜集达人应助axis采纳,获得10
13秒前
14秒前
18秒前
20秒前
21秒前
健忘的金完成签到 ,获得积分10
23秒前
哦可完成签到,获得积分10
23秒前
24秒前
SYLH应助NoobMasterZYF采纳,获得10
24秒前
含蓄的绍辉完成签到,获得积分10
25秒前
26秒前
26秒前
今后应助陆驳采纳,获得10
27秒前
zgt01发布了新的文献求助10
28秒前
刘亚赛发布了新的文献求助10
29秒前
琉璃929发布了新的文献求助10
31秒前
小孙的微信完成签到,获得积分10
33秒前
33秒前
CAOHOU给飞快的幻雪的求助进行了留言
37秒前
lyejxusgh发布了新的文献求助10
39秒前
英姑应助xuanhui采纳,获得10
39秒前
琉璃929完成签到,获得积分10
40秒前
量子星尘发布了新的文献求助10
40秒前
SYLH应助温城采纳,获得10
42秒前
42秒前
优秀的念双完成签到,获得积分10
42秒前
43秒前
传奇3应助科研通管家采纳,获得10
44秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959210
求助须知:如何正确求助?哪些是违规求助? 3505538
关于积分的说明 11124306
捐赠科研通 3237248
什么是DOI,文献DOI怎么找? 1789010
邀请新用户注册赠送积分活动 871512
科研通“疑难数据库(出版商)”最低求助积分说明 802824