亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Synthetic data generation of vibration signals at different speed and load conditions of transmissions utilizing generative adversarial networks

计算机科学 背景(考古学) 可靠性(半导体) 合成数据 数据采集 传输(电信) 人工智能 数据收集 振动 动力传动系统 数据传输 机器学习 控制工程 扭矩 工程类 功率(物理) 计算机硬件 古生物学 统计 物理 热力学 数学 量子力学 生物 操作系统 电信
作者
Timo König,Fabian Wagner,Robin Bäßler,Markus Kley,Marcus Liebschner
出处
期刊:Tm-technisches Messen [Oldenbourg Wissenschaftsverlag]
卷期号:90 (10): 639-649
标识
DOI:10.1515/teme-2023-0001
摘要

Abstract Condition monitoring of machines and powertrain components is an essential part of ensuring reliability and product safety in many industries. The monitored machines and components are often divided into different condition classes as well as classified using machine learning methods. In order to enable classification with machine learning algorithms, the acquisition of a sufficient amount of data from each condition class is essential. In reality, the collection of data for faulty system states turns out to be much more difficult, therefore in many use cases balanced data sets are not available. However, when classifying faulty states, an identical number of data per class is of great importance. This problem can be counteracted with synthetic data generation. Generative Adversarial Networks (GAN) are a suitable approach to generate synthetic data based on real measured data. In most cases of synthetic data generation, different damage cases, e.g. from a transmission, are simulated, but a generation of synthetic data is not performed at different operating conditions. However, different speeds and torques are a reality when monitoring, as the drive systems operate under changing operating conditions. Therefore, in the context of this paper, synthetic data generation at different operating states is investigated in order to implement a condition monitoring system for good and bad system conditions which includes different operating states. So, vibration data is acquired at different operating conditions of a transmission on a drive test rig and relevant features are highlighted using a suitable signal pre-processing method. The features, caused by different operating conditions, can also be generated synthetically by GAN. Therefore, it is possible to achieve a similar classification accuracy by integrating synthetically generated data as with real data, which makes the synthetic data generation a viable solution for extending existing data sets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yunshui发布了新的文献求助10
7秒前
深情安青应助TXZ06采纳,获得10
12秒前
16秒前
17秒前
17秒前
云溪关注了科研通微信公众号
17秒前
18秒前
鱼鱼鱼鱼鱼完成签到 ,获得积分10
21秒前
34秒前
痞老板死磕蟹黄堡完成签到 ,获得积分10
35秒前
杨涵完成签到 ,获得积分10
36秒前
37秒前
九月发布了新的文献求助10
41秒前
43秒前
云溪发布了新的文献求助20
44秒前
TXZ06发布了新的文献求助10
48秒前
55秒前
55秒前
华仔应助科研通管家采纳,获得10
1分钟前
morena应助科研通管家采纳,获得10
1分钟前
劉浏琉应助科研通管家采纳,获得10
1分钟前
劉浏琉应助科研通管家采纳,获得10
1分钟前
qqx应助科研通管家采纳,获得10
1分钟前
完美世界应助科研通管家采纳,获得10
1分钟前
Jasper应助雪霁采纳,获得10
1分钟前
1分钟前
louqianyang完成签到 ,获得积分10
1分钟前
1分钟前
狂暴战士完成签到 ,获得积分10
1分钟前
顾灵毓发布了新的文献求助20
1分钟前
1分钟前
1分钟前
杜大帅发布了新的文献求助10
1分钟前
负责不愁完成签到,获得积分10
2分钟前
2分钟前
feiCheung完成签到 ,获得积分10
2分钟前
负责不愁发布了新的文献求助10
2分钟前
凌香芦发布了新的文献求助10
2分钟前
杜大帅完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788346
求助须知:如何正确求助?哪些是违规求助? 5706422
关于积分的说明 15473418
捐赠科研通 4916427
什么是DOI,文献DOI怎么找? 2646333
邀请新用户注册赠送积分活动 1593998
关于科研通互助平台的介绍 1548436