A pilot study for active muscles decoding using functional near-infrared spectroscopy

标准差 峰度 线性判别分析 人工智能 模式识别(心理学) 偏斜 解码方法 计算机科学 数学 语音识别 统计 医学 病理
作者
Ruisen Huang,Keum-Shik,Fei Gao
标识
DOI:10.1109/ner52421.2023.10123845
摘要

This study is a preliminary step toward gait identification using a non-invasive brain-computer interface. We investigated the feasibility of decoding different active muscles from brain activation using functional near-infrared spectroscopy (fNIRS). A two-section experiment was designed to alternately activate the subjects' hamstring and quadriceps. Nine right-handed subjects, aged $28.1\pm 3.5$ , were recruited for the experiment. The measured optical intensities were converted to optical density changes and filtered by targeted principal component analysis (tPCA), a lowpass filter, and a highpass filter sequentially. Six features (slope, skewness, kurtosis, peak-to-peak, standard deviation, and entropy) were extracted from the filtered signals and fed to a linear discriminant analysis (LDA) classifier in pairs. Results showed that using the feature pair of slope-standard deviation, we could achieve a classification rate of more than 80% for all four categories (sitting extension, sitting flexion, standing extension, and standing flexion). The maximum classification accuracy was 85.34% for training validation and 92.22% for the testing dataset. Subsequently, an ANOVA test found significant decoding differences among feature combinations. Additionally, no significant difference is found among slope-included feature pairs, skewness-standard deviation, and standard deviation-entropy. The results proved that decoding different muscles related to gait is possible using fNIRS in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
子非我发布了新的文献求助10
刚刚
小程同学发布了新的文献求助10
刚刚
ycg发布了新的文献求助20
1秒前
州府十三完成签到,获得积分20
1秒前
Diss完成签到,获得积分10
1秒前
Orange应助科研通管家采纳,获得30
2秒前
3秒前
云舒应助科研通管家采纳,获得30
3秒前
Orange应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
iNk应助科研通管家采纳,获得20
3秒前
yar应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
musejie应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
Rylee完成签到,获得积分10
3秒前
iNk应助科研通管家采纳,获得20
3秒前
搜集达人应助科研通管家采纳,获得10
4秒前
凡迪亚比应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
4秒前
酷炫翠桃应助qaa2274278941采纳,获得10
4秒前
yar应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得30
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
4秒前
田様应助科研通管家采纳,获得10
4秒前
QUA应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
yar应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
5秒前
Orange应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
小梦完成签到,获得积分10
5秒前
愉快敏发布了新的文献求助10
5秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582