A pilot study for active muscles decoding using functional near-infrared spectroscopy

标准差 峰度 线性判别分析 人工智能 模式识别(心理学) 偏斜 解码方法 计算机科学 数学 语音识别 统计 医学 病理
作者
Ruisen Huang,Keum-Shik,Fei Gao
标识
DOI:10.1109/ner52421.2023.10123845
摘要

This study is a preliminary step toward gait identification using a non-invasive brain-computer interface. We investigated the feasibility of decoding different active muscles from brain activation using functional near-infrared spectroscopy (fNIRS). A two-section experiment was designed to alternately activate the subjects' hamstring and quadriceps. Nine right-handed subjects, aged $28.1\pm 3.5$ , were recruited for the experiment. The measured optical intensities were converted to optical density changes and filtered by targeted principal component analysis (tPCA), a lowpass filter, and a highpass filter sequentially. Six features (slope, skewness, kurtosis, peak-to-peak, standard deviation, and entropy) were extracted from the filtered signals and fed to a linear discriminant analysis (LDA) classifier in pairs. Results showed that using the feature pair of slope-standard deviation, we could achieve a classification rate of more than 80% for all four categories (sitting extension, sitting flexion, standing extension, and standing flexion). The maximum classification accuracy was 85.34% for training validation and 92.22% for the testing dataset. Subsequently, an ANOVA test found significant decoding differences among feature combinations. Additionally, no significant difference is found among slope-included feature pairs, skewness-standard deviation, and standard deviation-entropy. The results proved that decoding different muscles related to gait is possible using fNIRS in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨诗婕发布了新的文献求助10
1秒前
tsunami完成签到,获得积分20
1秒前
zyf完成签到,获得积分10
1秒前
小鱼仔完成签到,获得积分20
1秒前
阿牛哥完成签到,获得积分10
2秒前
我要发sci完成签到,获得积分10
2秒前
HanFeiZi完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
烟雨别离发布了新的文献求助100
5秒前
banana完成签到,获得积分10
7秒前
7秒前
7秒前
Yu完成签到,获得积分10
8秒前
9秒前
余喆完成签到,获得积分10
9秒前
9秒前
SciGPT应助decade采纳,获得10
10秒前
张龙雨完成签到 ,获得积分10
11秒前
11秒前
张丹兰完成签到,获得积分10
12秒前
12秒前
12秒前
月儿发布了新的文献求助10
12秒前
oopsabc完成签到,获得积分10
12秒前
sytbb完成签到 ,获得积分10
12秒前
研友_VZG7GZ应助honghong1992采纳,获得10
13秒前
小星星完成签到,获得积分10
13秒前
糊涂的皮卡丘完成签到,获得积分10
13秒前
科研通AI5应助蓝风铃采纳,获得10
13秒前
吃肯德基发布了新的文献求助10
13秒前
口腔溃杨完成签到 ,获得积分10
14秒前
搜集达人应助略略略采纳,获得10
14秒前
图图驳回了Hello应助
15秒前
张丹兰发布了新的文献求助10
15秒前
16秒前
敏感易烟发布了新的文献求助30
16秒前
16秒前
17秒前
如栩发布了新的文献求助10
18秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
International Handbook of Earthquake & Engineering Seismology, Part B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5146528
求助须知:如何正确求助?哪些是违规求助? 4343439
关于积分的说明 13526708
捐赠科研通 4184572
什么是DOI,文献DOI怎么找? 2294727
邀请新用户注册赠送积分活动 1295166
关于科研通互助平台的介绍 1238264