Development and internal-external validation of statistical and machine learning models for breast cancer prognostication: cohort study

乳腺癌 医学 四分位间距 癌症登记处 置信区间 队列 人口 比例危险模型 癌症 队列研究 机器学习 内科学 计算机科学 环境卫生
作者
Ash Kieran Clift,David Dodwell,Simon Lord,Stavros Petrou,Michael Brady,Gary S. Collins,Julia Hippisley‐Cox
标识
DOI:10.1136/bmj-2022-073800
摘要

Abstract Objective To develop a clinically useful model that estimates the 10 year risk of breast cancer related mortality in women (self-reported female sex) with breast cancer of any stage, comparing results from regression and machine learning approaches. Design Population based cohort study. Setting QResearch primary care database in England, with individual level linkage to the national cancer registry, Hospital Episodes Statistics, and national mortality registers. Participants 141 765 women aged 20 years and older with a diagnosis of invasive breast cancer between 1 January 2000 and 31 December 2020. Main outcome measures Four model building strategies comprising two regression (Cox proportional hazards and competing risks regression) and two machine learning (XGBoost and an artificial neural network) approaches. Internal-external cross validation was used for model evaluation. Random effects meta-analysis that pooled estimates of discrimination and calibration metrics, calibration plots, and decision curve analysis were used to assess model performance, transportability, and clinical utility. Results During a median 4.16 years (interquartile range 1.76-8.26) of follow-up, 21 688 breast cancer related deaths and 11 454 deaths from other causes occurred. Restricting to 10 years maximum follow-up from breast cancer diagnosis, 20 367 breast cancer related deaths occurred during a total of 688 564.81 person years. The crude breast cancer mortality rate was 295.79 per 10 000 person years (95% confidence interval 291.75 to 299.88). Predictors varied for each regression model, but both Cox and competing risks models included age at diagnosis, body mass index, smoking status, route to diagnosis, hormone receptor status, cancer stage, and grade of breast cancer. The Cox model’s random effects meta-analysis pooled estimate for Harrell’s C index was the highest of any model at 0.858 (95% confidence interval 0.853 to 0.864, and 95% prediction interval 0.843 to 0.873). It appeared acceptably calibrated on calibration plots. The competing risks regression model had good discrimination: pooled Harrell’s C index 0.849 (0.839 to 0.859, and 0.821 to 0.876, and evidence of systematic miscalibration on summary metrics was lacking. The machine learning models had acceptable discrimination overall (Harrell’s C index: XGBoost 0.821 (0.813 to 0.828, and 0.805 to 0.837); neural network 0.847 (0.835 to 0.858, and 0.816 to 0.878)), but had more complex patterns of miscalibration and more variable regional and stage specific performance. Decision curve analysis suggested that the Cox and competing risks regression models tested may have higher clinical utility than the two machine learning approaches. Conclusion In women with breast cancer of any stage, using the predictors available in this dataset, regression based methods had better and more consistent performance compared with machine learning approaches and may be worthy of further evaluation for potential clinical use, such as for stratified follow-up.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zjw完成签到,获得积分10
1秒前
hbpu230701完成签到,获得积分10
3秒前
笨笨的不斜完成签到,获得积分10
3秒前
刘雅彪完成签到 ,获得积分10
6秒前
张张张xxx完成签到,获得积分10
7秒前
云不暇完成签到 ,获得积分10
7秒前
华理附院孙文博完成签到 ,获得积分10
8秒前
skbkbe完成签到 ,获得积分10
12秒前
Lucky.完成签到 ,获得积分0
15秒前
是我呀小夏完成签到 ,获得积分10
21秒前
Lloyd_Lee完成签到,获得积分10
22秒前
文艺大米完成签到 ,获得积分10
22秒前
梦梦完成签到 ,获得积分10
23秒前
26秒前
你当像鸟飞往你的山完成签到 ,获得积分10
27秒前
222完成签到,获得积分10
30秒前
小唐完成签到,获得积分10
31秒前
YMY发布了新的文献求助10
32秒前
tess完成签到 ,获得积分10
32秒前
34秒前
nancy吴完成签到 ,获得积分10
35秒前
温温完成签到 ,获得积分10
36秒前
一久便惯完成签到 ,获得积分10
37秒前
陈正军发布了新的文献求助10
38秒前
xiaolang2004发布了新的文献求助10
39秒前
完美世界应助panx采纳,获得10
46秒前
caulif完成签到 ,获得积分10
47秒前
贤惠的迎夏完成签到,获得积分10
52秒前
一路硕博完成签到,获得积分10
52秒前
傻傻的哈密瓜完成签到,获得积分10
52秒前
raininjuly发布了新的文献求助10
53秒前
Harlotte完成签到 ,获得积分10
55秒前
jeffrey完成签到,获得积分10
55秒前
研友-wbg-LjbQIL完成签到 ,获得积分10
56秒前
YMY完成签到,获得积分10
57秒前
安详映阳完成签到 ,获得积分10
1分钟前
酷酷小子完成签到 ,获得积分10
1分钟前
Bioflying完成签到,获得积分10
1分钟前
小熊熊完成签到,获得积分10
1分钟前
xiaofenzi完成签到,获得积分10
1分钟前
高分求助中
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3434856
求助须知:如何正确求助?哪些是违规求助? 3032180
关于积分的说明 8944456
捐赠科研通 2720147
什么是DOI,文献DOI怎么找? 1492192
科研通“疑难数据库(出版商)”最低求助积分说明 689725
邀请新用户注册赠送积分活动 685862