亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep multi-feature fusion residual network for oral squamous cell carcinoma classification and its intelligent system using Raman spectroscopy

计算机科学 判别式 人工智能 特征(语言学) 残余物 模式识别(心理学) 深度学习 人工神经网络 融合 网络体系结构 精确性和召回率 骨干网 算法 哲学 语言学 计算机安全 计算机网络
作者
Mingxin Yu,Jingya Ding,Wanquan Liu,Xiaoying Tang,Jiabin Xia,Shengjun Liang,Rixing Jing,Lianqing Zhu,Tao Zhang
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:86: 105339-105339 被引量:7
标识
DOI:10.1016/j.bspc.2023.105339
摘要

Using fiber optic Raman spectroscopy and deep neural networks, we develop an intelligent system which will be used to assist surgeons accurately and efficiently to identify oral squamous cell carcinomas (OSCC). This system is able to classify 6 types of oral tissues. To achieve this goal, a novel classification framework called deep multi-feature fusion residual network (DMFF-ResNet) is proposed. This model is based on 16,200 Raman spectral data, obtained from the normal oral tissues and the OSCC of 90 patients through the surgical resection. Firstly, the 1-dimensional RestNet50 is taken as its backbone network. Then, the output spectral features of last three blocks are extracted from backbone network for feature fusion, which is expected to learn more spatial representations and have more discriminative power. Lastly, the derived spectral features are sent into a fully-connected neural network for performing the multiclassification task. Experimental results show that the proposed model achieves a competitive classification performance compared with state-of-the-art classifiers, and its accuracy, precision, and sensitivity reach 93.28%, 93.53%, and 93.13%, respectively. Further, the proposed framework is deployed on an edge computing device to form a prototype intelligent system for OSCC detection. To validate this system, we perform an offline test experiment in another 20 patients which demonstrates the developed intelligent system can successfully discriminate OSCC and normal oral tissues, with accuracy, precision, and recall of 92.78%, 92.33%, and 92.57%, respectively. The code was available at https://github.com/ISCLab-Bistu/retinanet-OSCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
4秒前
5秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得30
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
ding应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
6秒前
ZZZ完成签到,获得积分10
9秒前
羊羊羊发布了新的文献求助10
9秒前
歪歪吸发布了新的文献求助10
9秒前
10秒前
xiaokun发布了新的文献求助10
10秒前
123发布了新的文献求助10
10秒前
王老裂发布了新的文献求助80
15秒前
歪歪吸完成签到,获得积分10
16秒前
北一君完成签到,获得积分10
16秒前
何靖馥琳完成签到,获得积分10
21秒前
丘比特应助库里强采纳,获得10
23秒前
LJL完成签到 ,获得积分10
27秒前
yong完成签到 ,获得积分10
37秒前
42秒前
852应助赫贞采纳,获得10
50秒前
55秒前
MRu发布了新的文献求助10
58秒前
1分钟前
Dr_Zhan完成签到,获得积分10
1分钟前
1分钟前
ayato发布了新的文献求助10
1分钟前
1分钟前
1717发布了新的文献求助30
1分钟前
1分钟前
ayato完成签到,获得积分20
1分钟前
Hello应助2025alex采纳,获得10
1分钟前
李燕完成签到,获得积分20
1分钟前
科研通AI5应助张华采纳,获得30
1分钟前
李爱国应助Xinscribe采纳,获得10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5185944
求助须知:如何正确求助?哪些是违规求助? 4371293
关于积分的说明 13612012
捐赠科研通 4223623
什么是DOI,文献DOI怎么找? 2316534
邀请新用户注册赠送积分活动 1315159
关于科研通互助平台的介绍 1264147