Deep multi-feature fusion residual network for oral squamous cell carcinoma classification and its intelligent system using Raman spectroscopy

计算机科学 判别式 人工智能 特征(语言学) 残余物 模式识别(心理学) 深度学习 人工神经网络 融合 网络体系结构 精确性和召回率 骨干网 算法 哲学 语言学 计算机安全 计算机网络
作者
Mingxin Yu,Jingya Ding,Wanquan Liu,Xiaoying Tang,Jiabin Xia,Shengjun Liang,Rixing Jing,Lianqing Zhu,Tao Zhang
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:86: 105339-105339 被引量:7
标识
DOI:10.1016/j.bspc.2023.105339
摘要

Using fiber optic Raman spectroscopy and deep neural networks, we develop an intelligent system which will be used to assist surgeons accurately and efficiently to identify oral squamous cell carcinomas (OSCC). This system is able to classify 6 types of oral tissues. To achieve this goal, a novel classification framework called deep multi-feature fusion residual network (DMFF-ResNet) is proposed. This model is based on 16,200 Raman spectral data, obtained from the normal oral tissues and the OSCC of 90 patients through the surgical resection. Firstly, the 1-dimensional RestNet50 is taken as its backbone network. Then, the output spectral features of last three blocks are extracted from backbone network for feature fusion, which is expected to learn more spatial representations and have more discriminative power. Lastly, the derived spectral features are sent into a fully-connected neural network for performing the multiclassification task. Experimental results show that the proposed model achieves a competitive classification performance compared with state-of-the-art classifiers, and its accuracy, precision, and sensitivity reach 93.28%, 93.53%, and 93.13%, respectively. Further, the proposed framework is deployed on an edge computing device to form a prototype intelligent system for OSCC detection. To validate this system, we perform an offline test experiment in another 20 patients which demonstrates the developed intelligent system can successfully discriminate OSCC and normal oral tissues, with accuracy, precision, and recall of 92.78%, 92.33%, and 92.57%, respectively. The code was available at https://github.com/ISCLab-Bistu/retinanet-OSCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助欣喜的念芹采纳,获得10
1秒前
1秒前
2秒前
酷炫迎波完成签到,获得积分10
2秒前
3秒前
yly123完成签到,获得积分10
3秒前
WHH完成签到,获得积分10
3秒前
4秒前
6秒前
幻烨烨完成签到,获得积分10
6秒前
光亮的莺发布了新的文献求助10
7秒前
大脑袋应助zzf采纳,获得30
8秒前
8秒前
9秒前
zhang发布了新的文献求助10
9秒前
9秒前
欣喜的念芹完成签到,获得积分20
10秒前
玉婷完成签到,获得积分10
12秒前
神勇友灵完成签到,获得积分10
12秒前
CHyaa完成签到,获得积分10
12秒前
英姑应助摆烂研究牲采纳,获得10
12秒前
12秒前
12秒前
14秒前
jiao发布了新的文献求助10
15秒前
大气从安完成签到,获得积分10
15秒前
研友_VZG7GZ应助gengsumin采纳,获得10
16秒前
16秒前
孤独的狼发布了新的文献求助10
16秒前
xixi发布了新的文献求助30
16秒前
yly123发布了新的文献求助10
17秒前
17秒前
丸子_2025000完成签到,获得积分10
17秒前
Driscoll完成签到 ,获得积分10
18秒前
高高的蓝天完成签到 ,获得积分10
18秒前
Owen应助欣喜的念芹采纳,获得10
20秒前
baolequ发布了新的文献求助10
20秒前
鹿c3完成签到,获得积分10
21秒前
这瓜不卖完成签到,获得积分10
21秒前
孤独的狼完成签到,获得积分10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966029
求助须知:如何正确求助?哪些是违规求助? 3511354
关于积分的说明 11157644
捐赠科研通 3245890
什么是DOI,文献DOI怎么找? 1793218
邀请新用户注册赠送积分活动 874262
科研通“疑难数据库(出版商)”最低求助积分说明 804296