Deep multi-feature fusion residual network for oral squamous cell carcinoma classification and its intelligent system using Raman spectroscopy

计算机科学 判别式 人工智能 特征(语言学) 残余物 模式识别(心理学) 深度学习 人工神经网络 融合 网络体系结构 精确性和召回率 骨干网 算法 哲学 语言学 计算机安全 计算机网络
作者
Mingxin Yu,Jingya Ding,Wanquan Liu,Xiaoying Tang,Jiabin Xia,Shengjun Liang,Rixing Jing,Lianqing Zhu,Tao Zhang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:86: 105339-105339 被引量:7
标识
DOI:10.1016/j.bspc.2023.105339
摘要

Using fiber optic Raman spectroscopy and deep neural networks, we develop an intelligent system which will be used to assist surgeons accurately and efficiently to identify oral squamous cell carcinomas (OSCC). This system is able to classify 6 types of oral tissues. To achieve this goal, a novel classification framework called deep multi-feature fusion residual network (DMFF-ResNet) is proposed. This model is based on 16,200 Raman spectral data, obtained from the normal oral tissues and the OSCC of 90 patients through the surgical resection. Firstly, the 1-dimensional RestNet50 is taken as its backbone network. Then, the output spectral features of last three blocks are extracted from backbone network for feature fusion, which is expected to learn more spatial representations and have more discriminative power. Lastly, the derived spectral features are sent into a fully-connected neural network for performing the multiclassification task. Experimental results show that the proposed model achieves a competitive classification performance compared with state-of-the-art classifiers, and its accuracy, precision, and sensitivity reach 93.28%, 93.53%, and 93.13%, respectively. Further, the proposed framework is deployed on an edge computing device to form a prototype intelligent system for OSCC detection. To validate this system, we perform an offline test experiment in another 20 patients which demonstrates the developed intelligent system can successfully discriminate OSCC and normal oral tissues, with accuracy, precision, and recall of 92.78%, 92.33%, and 92.57%, respectively. The code was available at https://github.com/ISCLab-Bistu/retinanet-OSCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助棉棉采纳,获得10
刚刚
事上炼完成签到 ,获得积分10
1秒前
SciGPT应助路冰采纳,获得10
1秒前
肥童小可完成签到,获得积分20
1秒前
瑞一杯小黄油拿铁完成签到,获得积分10
1秒前
孙总发布了新的文献求助10
2秒前
2秒前
牛哇ccc完成签到,获得积分10
3秒前
清见的心完成签到,获得积分10
3秒前
3秒前
FashionBoy应助鸢雨情笺采纳,获得10
4秒前
4秒前
星期天不上发条完成签到 ,获得积分10
4秒前
kourosz完成签到,获得积分10
4秒前
7788完成签到,获得积分10
5秒前
青春完成签到 ,获得积分10
6秒前
心语完成签到 ,获得积分10
6秒前
孤岛完成签到,获得积分10
6秒前
安安发布了新的文献求助10
7秒前
Lavandula完成签到 ,获得积分10
7秒前
wx完成签到 ,获得积分10
7秒前
彭于晏应助LL采纳,获得10
7秒前
成就的幻雪完成签到,获得积分20
7秒前
叽叽叽完成签到 ,获得积分10
7秒前
wxq完成签到,获得积分10
7秒前
bei完成签到,获得积分10
8秒前
青易发布了新的文献求助10
8秒前
李_发布了新的文献求助10
8秒前
龙卷风发布了新的文献求助10
8秒前
研友_LBR9gL完成签到 ,获得积分10
9秒前
陶醉的鹤轩完成签到,获得积分10
9秒前
鸢雨情笺完成签到,获得积分10
9秒前
CipherSage应助kndr10采纳,获得10
9秒前
任性完成签到,获得积分10
9秒前
10秒前
10秒前
Shaynin发布了新的文献求助10
10秒前
NexusExplorer应助Lee采纳,获得10
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482882
求助须知:如何正确求助?哪些是违规求助? 4583608
关于积分的说明 14390932
捐赠科研通 4513013
什么是DOI,文献DOI怎么找? 2473299
邀请新用户注册赠送积分活动 1459278
关于科研通互助平台的介绍 1432917