亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep multi-feature fusion residual network for oral squamous cell carcinoma classification and its intelligent system using Raman spectroscopy

计算机科学 判别式 人工智能 特征(语言学) 残余物 模式识别(心理学) 深度学习 人工神经网络 融合 网络体系结构 精确性和召回率 骨干网 算法 哲学 语言学 计算机安全 计算机网络
作者
Mingxin Yu,Jingya Ding,Wanquan Liu,Xiaoying Tang,Jiabin Xia,Shengjun Liang,Rixing Jing,Lianqing Zhu,Tao Zhang
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:86: 105339-105339 被引量:7
标识
DOI:10.1016/j.bspc.2023.105339
摘要

Using fiber optic Raman spectroscopy and deep neural networks, we develop an intelligent system which will be used to assist surgeons accurately and efficiently to identify oral squamous cell carcinomas (OSCC). This system is able to classify 6 types of oral tissues. To achieve this goal, a novel classification framework called deep multi-feature fusion residual network (DMFF-ResNet) is proposed. This model is based on 16,200 Raman spectral data, obtained from the normal oral tissues and the OSCC of 90 patients through the surgical resection. Firstly, the 1-dimensional RestNet50 is taken as its backbone network. Then, the output spectral features of last three blocks are extracted from backbone network for feature fusion, which is expected to learn more spatial representations and have more discriminative power. Lastly, the derived spectral features are sent into a fully-connected neural network for performing the multiclassification task. Experimental results show that the proposed model achieves a competitive classification performance compared with state-of-the-art classifiers, and its accuracy, precision, and sensitivity reach 93.28%, 93.53%, and 93.13%, respectively. Further, the proposed framework is deployed on an edge computing device to form a prototype intelligent system for OSCC detection. To validate this system, we perform an offline test experiment in another 20 patients which demonstrates the developed intelligent system can successfully discriminate OSCC and normal oral tissues, with accuracy, precision, and recall of 92.78%, 92.33%, and 92.57%, respectively. The code was available at https://github.com/ISCLab-Bistu/retinanet-OSCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
馆长举报只是虚瘦求助涉嫌违规
9秒前
9秒前
bogula1112完成签到 ,获得积分10
11秒前
笨笨棒球完成签到,获得积分10
13秒前
15秒前
晓阳发布了新的文献求助10
21秒前
Hello应助活力的妙菡采纳,获得10
22秒前
晓阳完成签到,获得积分10
33秒前
35秒前
MizzZeus完成签到,获得积分10
38秒前
手术刀完成签到 ,获得积分10
39秒前
40秒前
seamewbobo发布了新的文献求助20
42秒前
50秒前
52秒前
不了了完成签到,获得积分10
57秒前
不了了发布了新的文献求助10
59秒前
单薄绿竹完成签到,获得积分10
1分钟前
1分钟前
不了了发布了新的文献求助10
1分钟前
情怀应助活力的妙菡采纳,获得10
1分钟前
1分钟前
1分钟前
Jasper应助科研通管家采纳,获得10
1分钟前
明亮的代灵完成签到 ,获得积分10
1分钟前
哦莫发布了新的文献求助30
1分钟前
1分钟前
1分钟前
余生完成签到 ,获得积分10
1分钟前
科研通AI5应助MaxWong采纳,获得10
2分钟前
哦莫完成签到,获得积分10
2分钟前
2分钟前
jyy发布了新的文献求助200
2分钟前
MaxWong发布了新的文献求助10
2分钟前
2分钟前
午餐肉完成签到,获得积分10
2分钟前
方金龙发布了新的文献求助10
2分钟前
冷酷芫完成签到,获得积分10
2分钟前
2分钟前
迷你的靖雁完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4567464
求助须知:如何正确求助?哪些是违规求助? 3990555
关于积分的说明 12354784
捐赠科研通 3662326
什么是DOI,文献DOI怎么找? 2018092
邀请新用户注册赠送积分活动 1052648
科研通“疑难数据库(出版商)”最低求助积分说明 940121