Deep multi-feature fusion residual network for oral squamous cell carcinoma classification and its intelligent system using Raman spectroscopy

计算机科学 判别式 人工智能 特征(语言学) 残余物 模式识别(心理学) 深度学习 人工神经网络 融合 网络体系结构 精确性和召回率 骨干网 算法 哲学 语言学 计算机安全 计算机网络
作者
Mingxin Yu,Jingya Ding,Wanquan Liu,Xiaoying Tang,Jiabin Xia,Shengjun Liang,Rixing Jing,Lianqing Zhu,Tao Zhang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:86: 105339-105339 被引量:7
标识
DOI:10.1016/j.bspc.2023.105339
摘要

Using fiber optic Raman spectroscopy and deep neural networks, we develop an intelligent system which will be used to assist surgeons accurately and efficiently to identify oral squamous cell carcinomas (OSCC). This system is able to classify 6 types of oral tissues. To achieve this goal, a novel classification framework called deep multi-feature fusion residual network (DMFF-ResNet) is proposed. This model is based on 16,200 Raman spectral data, obtained from the normal oral tissues and the OSCC of 90 patients through the surgical resection. Firstly, the 1-dimensional RestNet50 is taken as its backbone network. Then, the output spectral features of last three blocks are extracted from backbone network for feature fusion, which is expected to learn more spatial representations and have more discriminative power. Lastly, the derived spectral features are sent into a fully-connected neural network for performing the multiclassification task. Experimental results show that the proposed model achieves a competitive classification performance compared with state-of-the-art classifiers, and its accuracy, precision, and sensitivity reach 93.28%, 93.53%, and 93.13%, respectively. Further, the proposed framework is deployed on an edge computing device to form a prototype intelligent system for OSCC detection. To validate this system, we perform an offline test experiment in another 20 patients which demonstrates the developed intelligent system can successfully discriminate OSCC and normal oral tissues, with accuracy, precision, and recall of 92.78%, 92.33%, and 92.57%, respectively. The code was available at https://github.com/ISCLab-Bistu/retinanet-OSCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助火星上的迎天采纳,获得10
1秒前
风趣的飞荷完成签到,获得积分10
1秒前
1秒前
彭于晏应助顶刊刺客cc采纳,获得10
1秒前
bkagyin应助芳芳采纳,获得10
2秒前
3秒前
5秒前
亚当完成签到 ,获得积分10
6秒前
ls完成签到,获得积分10
8秒前
小陈完成签到 ,获得积分10
8秒前
Adzuki0812发布了新的文献求助30
8秒前
乾雨完成签到 ,获得积分10
9秒前
情怀应助嬛嬛采纳,获得10
9秒前
Hermione发布了新的文献求助10
9秒前
喵喵666完成签到,获得积分10
9秒前
刘刘佳完成签到,获得积分10
10秒前
Baize完成签到,获得积分10
10秒前
10秒前
11秒前
smile发布了新的文献求助50
11秒前
humorlife完成签到,获得积分10
11秒前
12秒前
愉快涵菱发布了新的文献求助10
12秒前
Jameszhuo完成签到,获得积分10
13秒前
Jeremy应助69qq采纳,获得30
13秒前
小李的科研同完成签到,获得积分10
14秒前
taotie发布了新的文献求助10
15秒前
Jameszhuo发布了新的文献求助10
15秒前
Lucas应助Hermione采纳,获得10
16秒前
赛特新思完成签到,获得积分10
16秒前
卡尔发布了新的文献求助10
16秒前
含蓄的保温杯完成签到,获得积分10
17秒前
平平无奇李同学完成签到,获得积分10
17秒前
NLJY完成签到,获得积分10
17秒前
17秒前
17秒前
17秒前
JKfeng发布了新的文献求助10
17秒前
Jeremy应助幽默孤菱采纳,获得10
18秒前
爱蕊灬发布了新的文献求助10
19秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5349785
求助须知:如何正确求助?哪些是违规求助? 4483501
关于积分的说明 13955962
捐赠科研通 4382679
什么是DOI,文献DOI怎么找? 2407917
邀请新用户注册赠送积分活动 1400627
关于科研通互助平台的介绍 1373868