Deep multi-feature fusion residual network for oral squamous cell carcinoma classification and its intelligent system using Raman spectroscopy

计算机科学 判别式 人工智能 特征(语言学) 残余物 模式识别(心理学) 深度学习 人工神经网络 融合 网络体系结构 精确性和召回率 骨干网 算法 语言学 计算机安全 哲学 计算机网络
作者
Mingxin Yu,Jingya Ding,Wanquan Liu,Xiaoying Tang,Jiabin Xia,Shengjun Liang,Rixing Jing,Lianqing Zhu,Tao Zhang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:86: 105339-105339 被引量:4
标识
DOI:10.1016/j.bspc.2023.105339
摘要

Using fiber optic Raman spectroscopy and deep neural networks, we develop an intelligent system which will be used to assist surgeons accurately and efficiently to identify oral squamous cell carcinomas (OSCC). This system is able to classify 6 types of oral tissues. To achieve this goal, a novel classification framework called deep multi-feature fusion residual network (DMFF-ResNet) is proposed. This model is based on 16,200 Raman spectral data, obtained from the normal oral tissues and the OSCC of 90 patients through the surgical resection. Firstly, the 1-dimensional RestNet50 is taken as its backbone network. Then, the output spectral features of last three blocks are extracted from backbone network for feature fusion, which is expected to learn more spatial representations and have more discriminative power. Lastly, the derived spectral features are sent into a fully-connected neural network for performing the multiclassification task. Experimental results show that the proposed model achieves a competitive classification performance compared with state-of-the-art classifiers, and its accuracy, precision, and sensitivity reach 93.28%, 93.53%, and 93.13%, respectively. Further, the proposed framework is deployed on an edge computing device to form a prototype intelligent system for OSCC detection. To validate this system, we perform an offline test experiment in another 20 patients which demonstrates the developed intelligent system can successfully discriminate OSCC and normal oral tissues, with accuracy, precision, and recall of 92.78%, 92.33%, and 92.57%, respectively. The code was available at https://github.com/ISCLab-Bistu/retinanet-OSCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
轻松傲薇发布了新的文献求助10
6秒前
xiaoxiang_1001完成签到,获得积分10
6秒前
顾矜应助Jeremy采纳,获得10
7秒前
7秒前
俭朴的绝义完成签到,获得积分10
9秒前
10秒前
很多奶油完成签到 ,获得积分10
12秒前
iamleopeng应助cherlia采纳,获得10
14秒前
虞人达发布了新的文献求助10
15秒前
一投必中完成签到,获得积分10
15秒前
小夏完成签到,获得积分20
16秒前
17秒前
Trista完成签到,获得积分10
19秒前
大鱼完成签到,获得积分10
19秒前
19秒前
WQW完成签到,获得积分10
20秒前
CQ完成签到,获得积分10
21秒前
小夏发布了新的文献求助10
21秒前
22秒前
Duan应助哭泣的映寒采纳,获得10
25秒前
啦啦啦啦啦完成签到,获得积分10
30秒前
kiki完成签到,获得积分10
32秒前
32秒前
神勇映容完成签到,获得积分10
33秒前
英姑应助小夏采纳,获得10
34秒前
科研通AI2S应助lqlqhehehe采纳,获得10
37秒前
alltoowell完成签到,获得积分0
37秒前
华北走地鸡完成签到,获得积分10
38秒前
zyc发布了新的文献求助10
38秒前
39秒前
优秀傲之发布了新的文献求助10
39秒前
小郭应助zyc采纳,获得10
43秒前
iamleopeng应助wx采纳,获得10
44秒前
芋头完成签到,获得积分10
45秒前
长乐完成签到,获得积分10
46秒前
北风北风完成签到 ,获得积分10
46秒前
优秀傲之完成签到,获得积分10
47秒前
48秒前
小夏完成签到,获得积分10
48秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 930
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3266280
求助须知:如何正确求助?哪些是违规求助? 2906091
关于积分的说明 8336645
捐赠科研通 2576480
什么是DOI,文献DOI怎么找? 1400556
科研通“疑难数据库(出版商)”最低求助积分说明 654786
邀请新用户注册赠送积分活动 633661