Deep multi-feature fusion residual network for oral squamous cell carcinoma classification and its intelligent system using Raman spectroscopy

计算机科学 判别式 人工智能 特征(语言学) 残余物 模式识别(心理学) 深度学习 人工神经网络 融合 网络体系结构 精确性和召回率 骨干网 算法 哲学 语言学 计算机安全 计算机网络
作者
Mingxin Yu,Jingya Ding,Wanquan Liu,Xiaoying Tang,Jiabin Xia,Shengjun Liang,Rixing Jing,Lianqing Zhu,Tao Zhang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:86: 105339-105339 被引量:7
标识
DOI:10.1016/j.bspc.2023.105339
摘要

Using fiber optic Raman spectroscopy and deep neural networks, we develop an intelligent system which will be used to assist surgeons accurately and efficiently to identify oral squamous cell carcinomas (OSCC). This system is able to classify 6 types of oral tissues. To achieve this goal, a novel classification framework called deep multi-feature fusion residual network (DMFF-ResNet) is proposed. This model is based on 16,200 Raman spectral data, obtained from the normal oral tissues and the OSCC of 90 patients through the surgical resection. Firstly, the 1-dimensional RestNet50 is taken as its backbone network. Then, the output spectral features of last three blocks are extracted from backbone network for feature fusion, which is expected to learn more spatial representations and have more discriminative power. Lastly, the derived spectral features are sent into a fully-connected neural network for performing the multiclassification task. Experimental results show that the proposed model achieves a competitive classification performance compared with state-of-the-art classifiers, and its accuracy, precision, and sensitivity reach 93.28%, 93.53%, and 93.13%, respectively. Further, the proposed framework is deployed on an edge computing device to form a prototype intelligent system for OSCC detection. To validate this system, we perform an offline test experiment in another 20 patients which demonstrates the developed intelligent system can successfully discriminate OSCC and normal oral tissues, with accuracy, precision, and recall of 92.78%, 92.33%, and 92.57%, respectively. The code was available at https://github.com/ISCLab-Bistu/retinanet-OSCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助张金漫采纳,获得10
1秒前
ddy完成签到,获得积分20
1秒前
共享精神应助hh采纳,获得10
1秒前
1秒前
2秒前
curtisness完成签到,获得积分0
2秒前
3秒前
wjh完成签到,获得积分10
3秒前
3秒前
boom完成签到,获得积分10
4秒前
aaame发布了新的文献求助30
5秒前
Vicky发布了新的文献求助10
5秒前
蒋蒋发布了新的文献求助10
6秒前
bkagyin应助struggle采纳,获得10
6秒前
隐形曼青应助zz采纳,获得10
6秒前
6秒前
ddy发布了新的文献求助20
8秒前
8秒前
向日葵发布了新的文献求助10
8秒前
9秒前
樱桃小丸子完成签到,获得积分20
10秒前
Vicky完成签到,获得积分10
11秒前
共享精神应助许馨予采纳,获得10
11秒前
gaintpeople完成签到,获得积分10
12秒前
香蕉觅云应助mly采纳,获得10
12秒前
量子星尘发布了新的文献求助10
13秒前
wangli发布了新的文献求助10
14秒前
SY发布了新的文献求助10
14秒前
llopcop完成签到,获得积分10
15秒前
haha完成签到,获得积分10
15秒前
15秒前
16秒前
xuwan发布了新的文献求助10
16秒前
脑洞疼应助Charlieite采纳,获得10
16秒前
精明尔芙敏完成签到 ,获得积分10
16秒前
Zilch发布了新的文献求助10
16秒前
16秒前
善学以致用应助WYL采纳,获得10
17秒前
17秒前
小刘同学发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5480697
求助须知:如何正确求助?哪些是违规求助? 4581819
关于积分的说明 14382394
捐赠科研通 4510450
什么是DOI,文献DOI怎么找? 2471803
邀请新用户注册赠送积分活动 1458216
关于科研通互助平台的介绍 1431896