Active electronic structure derived by Fe-Cl-C coordination of single-atom cathode applied in antibiotics degradation by electro-Fenton: Enhanced transformation of oxygen to hydroxyl radicals via 3-electron pathway

化学 激进的 催化作用 电子转移 光化学 电子结构 金属 氧化物 电子受体 无机化学 计算化学 有机化学
作者
Ruijun Ren,Xiaomeng Shang,Zilong Song,Chen Li,Zhenbei Wang,Fei Qi,Amir Ikhlaq,Jolanta Kumirska,Ewa Maria Siedlecka,Oksana Ismailova
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:474: 145545-145545 被引量:12
标识
DOI:10.1016/j.cej.2023.145545
摘要

Designing heterogeneous catalysts with atomically dispersed active sites is vital to promote electro-Fenton (EF) activity, but how to regulate the electronic structure of metal centers to overcome the rate-limiting step over electron transfer triggered by reduction-/oxidation-state cycle in Fenton still remains a great challenge. Herein, we report a systematic investigation into heteroatom-doped engineering for tuning the electronic structure of iron single-atom sites by integrating electron-acceptor chlorine atoms into MOF-derived carbon substrate, in which the conversion of O2 toward •OH in EF were enhanced over the electronic structures of Fe-Cl2C2 and Fe-Cl2C3 formed by iron unsaturated coordination with chlorine and carbon atoms via a 3-electron pathway, and overcame the restriction of the rate-limiting step for reducing oxidized metal ions. The resulting accumulative concentration of •OH by FeCl2Cx/PC surpassed that of iron oxide nanoparticles by almost 2 times. Iron site shielding experiments and density functional theory calculations further demonstrated that the vital effect of Fe-Cl2C3 configuration corresponds to Fe(III) on Fe center contributes to H2O2 production and the dominant role of Fe-Cl2C2 configuration corresponds to Fe(II) in H2O2 activation to form •OH. Meanwhile, FeCl2Cx/PC exhibited less pH dependence, high stability, and efficient applicability for various antibiotics and wastewater remediation. The above results provide a new perspective into the reaction mechanism of multi-electron oxygen reduction pathway on single-atom catalysts by modulating the electronic structure of chlorine coordination.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿泽完成签到,获得积分10
刚刚
lutos发布了新的文献求助30
刚刚
BeeC001完成签到,获得积分10
1秒前
1秒前
文艺的冷风完成签到 ,获得积分10
1秒前
脑洞疼应助kjh采纳,获得10
1秒前
星辰大海应助林林采纳,获得10
1秒前
小吴完成签到,获得积分10
2秒前
Ava应助豪的花花采纳,获得10
2秒前
porcelain完成签到,获得积分10
2秒前
知鱼完成签到,获得积分10
2秒前
CodeCraft应助YuGe采纳,获得10
2秒前
2秒前
musei发布了新的文献求助10
2秒前
3秒前
justsoso完成签到,获得积分10
3秒前
呆萌的冰姬完成签到 ,获得积分10
3秒前
彼岸完成签到,获得积分20
3秒前
jason完成签到,获得积分10
3秒前
歌德商务楼完成签到,获得积分10
3秒前
hkh发布了新的文献求助10
4秒前
Ysj完成签到,获得积分10
5秒前
xiaoliuyaonuli完成签到 ,获得积分10
5秒前
知鱼发布了新的文献求助10
5秒前
积极墨镜完成签到,获得积分10
5秒前
6秒前
孙一应助吴硫采纳,获得10
6秒前
moya驳回了赘婿应助
7秒前
7秒前
8秒前
坚强的哈密瓜完成签到,获得积分10
8秒前
likes发布了新的文献求助10
9秒前
广东发布了新的文献求助10
9秒前
脑洞疼应助幸福大白采纳,获得10
9秒前
顾矜应助幸福大白采纳,获得10
9秒前
汉堡包应助幸福大白采纳,获得10
9秒前
共享精神应助幸福大白采纳,获得10
9秒前
完美世界应助幸福大白采纳,获得10
9秒前
香蕉觅云应助幸福大白采纳,获得10
10秒前
彭于晏应助幸福大白采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
连铸钢板坯低倍组织缺陷评级图 500
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3700658
求助须知:如何正确求助?哪些是违规求助? 3250908
关于积分的说明 9872028
捐赠科研通 2962927
什么是DOI,文献DOI怎么找? 1624903
邀请新用户注册赠送积分活动 769618
科研通“疑难数据库(出版商)”最低求助积分说明 742384