National-Level Multimodal Origin–Destination Estimation Based on Passively Collected Location Data and Machine Learning Methods

计算机科学 加权 数据挖掘 插补(统计学) 样品(材料) 鉴定(生物学) 旅游调查 估计 利用 数据收集 数据科学 旅游行为 运输工程 机器学习 缺少数据 工程类 统计 放射科 生物 医学 植物 色谱法 化学 计算机安全 系统工程 数学
作者
Yixuan Pan,Aref Darzi,Mofeng Yang,Qianqian Sun,Aliakbar Kabiri,Guangchen Zhao,Chenfeng Xiong,Lei Zhang
出处
期刊:Transportation Research Record [SAGE]
标识
DOI:10.1177/03611981231189732
摘要

Along with the development of information and positioning technologies, there emerges passively collected location data that contain location observations with time information from various types of mobile devices. Passive location data are known for their large sample size and continuous behavior observations. However, they also require careful and comprehensive data processing and modeling algorithms for privacy protection and practical applications. In the meantime, the travel demand estimation of origin–destination (OD) tables is fundamental in transportation planning and analysis. There is a lack of national OD estimation that provides time-dependent travel behaviors for all travel modes. Passively collected location data appeal to researchers for their potential of serving as the data source for estimation and monitoring of large-scale multimodal travel demand. This research proposes a comprehensive set of methods for passive location data processing including data cleaning, activity location and purpose identification, trip-level information identification, social demographic imputation, sample weighting and expansion, and demand validation. For each task, the paper evaluates the state-of-the-practice and state-of-the-art algorithms and develops an applicable method jointly considering different features of various passive location data sources, imputation accuracy, and computation efficiency. The paper further examines the viability of the method kit in a national-level case study and successfully derives the multimodal national-level OD estimates with additional data products, such as trip rate and vehicle miles traveled, at different geographic levels and temporal resolutions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
上官若男应助Wqian采纳,获得10
1秒前
闪闪航空发布了新的文献求助10
6秒前
linlin发布了新的文献求助10
7秒前
HB发布了新的文献求助10
7秒前
清脆乐曲完成签到,获得积分10
8秒前
felix发布了新的文献求助10
9秒前
科研通AI6应助sssshhh采纳,获得10
10秒前
lucygaga完成签到 ,获得积分10
12秒前
13秒前
13秒前
科研通AI6应助Xjx6519采纳,获得20
13秒前
魔幻冰棍发布了新的文献求助10
15秒前
BowieHuang应助白白采纳,获得10
15秒前
mirrovo完成签到 ,获得积分10
15秒前
自然的平蓝完成签到,获得积分10
17秒前
深情安青应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
Linos应助科研通管家采纳,获得10
19秒前
蓝天应助科研通管家采纳,获得10
19秒前
情怀应助科研通管家采纳,获得10
19秒前
田様应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
蓝天应助科研通管家采纳,获得10
19秒前
情怀应助科研通管家采纳,获得10
19秒前
orixero应助科研通管家采纳,获得10
19秒前
小蘑菇应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
爆米花应助1816013153采纳,获得30
19秒前
爆米花应助科研通管家采纳,获得10
19秒前
蓝天应助科研通管家采纳,获得10
19秒前
汉堡包应助科研通管家采纳,获得10
19秒前
科研菜j应助科研通管家采纳,获得20
20秒前
wanci应助科研通管家采纳,获得10
20秒前
JamesPei应助科研通管家采纳,获得10
20秒前
蓝天应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557938
求助须知:如何正确求助?哪些是违规求助? 4642910
关于积分的说明 14669614
捐赠科研通 4584414
什么是DOI,文献DOI怎么找? 2514801
邀请新用户注册赠送积分活动 1488970
关于科研通互助平台的介绍 1459614