National-Level Multimodal Origin–Destination Estimation Based on Passively Collected Location Data and Machine Learning Methods

计算机科学 加权 数据挖掘 插补(统计学) 样品(材料) 鉴定(生物学) 旅游调查 估计 利用 数据收集 数据科学 旅游行为 运输工程 机器学习 缺少数据 工程类 统计 放射科 生物 医学 植物 色谱法 化学 计算机安全 系统工程 数学
作者
Yixuan Pan,Aref Darzi,Mofeng Yang,Qianqian Sun,Aliakbar Kabiri,Guangchen Zhao,Chenfeng Xiong,Lei Zhang
出处
期刊:Transportation Research Record [SAGE]
标识
DOI:10.1177/03611981231189732
摘要

Along with the development of information and positioning technologies, there emerges passively collected location data that contain location observations with time information from various types of mobile devices. Passive location data are known for their large sample size and continuous behavior observations. However, they also require careful and comprehensive data processing and modeling algorithms for privacy protection and practical applications. In the meantime, the travel demand estimation of origin–destination (OD) tables is fundamental in transportation planning and analysis. There is a lack of national OD estimation that provides time-dependent travel behaviors for all travel modes. Passively collected location data appeal to researchers for their potential of serving as the data source for estimation and monitoring of large-scale multimodal travel demand. This research proposes a comprehensive set of methods for passive location data processing including data cleaning, activity location and purpose identification, trip-level information identification, social demographic imputation, sample weighting and expansion, and demand validation. For each task, the paper evaluates the state-of-the-practice and state-of-the-art algorithms and develops an applicable method jointly considering different features of various passive location data sources, imputation accuracy, and computation efficiency. The paper further examines the viability of the method kit in a national-level case study and successfully derives the multimodal national-level OD estimates with additional data products, such as trip rate and vehicle miles traveled, at different geographic levels and temporal resolutions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
佐小叶发布了新的文献求助10
刚刚
奋斗龙猫发布了新的文献求助10
1秒前
2秒前
3秒前
科研通AI6.1应助Ytion采纳,获得10
6秒前
6秒前
6秒前
7秒前
纯情的白开水完成签到 ,获得积分10
7秒前
7秒前
8秒前
在水一方应助yanyust采纳,获得10
9秒前
9秒前
劳永杰发布了新的文献求助10
9秒前
笑点低梦安完成签到,获得积分10
9秒前
Lanmeiwei完成签到,获得积分10
11秒前
QH发布了新的文献求助10
11秒前
12秒前
李爱国应助慕昊强采纳,获得10
13秒前
李健应助多多采纳,获得10
13秒前
myelin发布了新的文献求助10
13秒前
Dana完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
Akim应助佐小叶采纳,获得10
14秒前
tender发布了新的文献求助10
14秒前
17秒前
17秒前
18秒前
18秒前
hkh发布了新的文献求助10
18秒前
18秒前
19秒前
19秒前
快乐的鱼完成签到,获得积分10
19秒前
科目三应助科研通管家采纳,获得10
20秒前
赘婿应助科研通管家采纳,获得30
20秒前
20秒前
赘婿应助科研通管家采纳,获得30
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
中国脑卒中防治报告 1000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5826378
求助须知:如何正确求助?哪些是违规求助? 6014938
关于积分的说明 15569392
捐赠科研通 4946629
什么是DOI,文献DOI怎么找? 2664904
邀请新用户注册赠送积分活动 1610755
关于科研通互助平台的介绍 1565665