Real-time 3D shape measurement of dynamic scenes using fringe projection profilometry: lightweight NAS-optimized dual frequency deep learning approach

计算机科学 结构光三维扫描仪 轮廓仪 人工智能 解调 计算机视觉 投影(关系代数) 人工神经网络 深度学习 傅里叶变换 相位恢复 相(物质) 算法 扫描仪 频道(广播) 数学 物理 计算机网络 数学分析 化学 有机化学 量子力学 表面粗糙度
作者
Yueyang Li,Zhoujie Wu,Junfei Shen,Qican Zhang
出处
期刊:Optics Express [The Optical Society]
卷期号:31 (24): 40803-40803 被引量:5
标识
DOI:10.1364/oe.506343
摘要

Achieving real-time and high-accuracy 3D reconstruction of dynamic scenes is a fundamental challenge in many fields, including online monitoring, augmented reality, and so on. On one hand, traditional methods, such as Fourier transform profilometry (FTP) and phase-shifting profilometry (PSP), are struggling to balance measuring efficiency and accuracy. On the other hand, deep learning-based approaches, which offer the potential for improved accuracy, are hindered by large parameter amounts and complex structures less amenable to real-time requirements. To solve this problem, we proposed a network architecture search (NAS)-based method for real-time processing and 3D measurement of dynamic scenes with rate equivalent to single-shot. A NAS-optimized lightweight neural network was designed for efficient phase demodulation, while an improved dual-frequency strategy was employed coordinately for flexible absolute phase unwrapping. The experiment results demonstrate that our method can effectively perform 3D reconstruction with a reconstruction speed of 58fps, and realize high-accuracy measurement of dynamic scenes based on deep learning for what we believe to be the first time with the average RMS error of about 0.08 mm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
corp_9完成签到,获得积分10
刚刚
he发布了新的文献求助10
2秒前
yaaabo发布了新的文献求助20
2秒前
2秒前
陈星翰发布了新的文献求助10
3秒前
许许完成签到,获得积分10
4秒前
丘比特应助赵浩楠采纳,获得10
4秒前
温柔迎波完成签到,获得积分10
4秒前
yyyyyy完成签到,获得积分10
5秒前
hjbjhb发布了新的文献求助10
5秒前
5秒前
tjxhtj发布了新的文献求助10
5秒前
yeyeye发布了新的文献求助10
5秒前
6秒前
6秒前
ggg完成签到,获得积分10
8秒前
张国庆完成签到,获得积分10
9秒前
sixyi完成签到,获得积分20
10秒前
萝卜发布了新的文献求助10
10秒前
11秒前
赘婿应助正直焦采纳,获得10
12秒前
NexusExplorer应助Hoolyshit采纳,获得10
12秒前
赘婿应助hjbjhb采纳,获得10
12秒前
yummy发布了新的文献求助10
13秒前
顾矜应助小向采纳,获得10
13秒前
打打应助竹签子采纳,获得20
13秒前
13秒前
每天都在想课题完成签到,获得积分10
14秒前
14秒前
14秒前
隐形曼青应助Kim_Hou采纳,获得30
15秒前
wanci应助钱钱采纳,获得10
16秒前
16秒前
我是老大应助yeyeye采纳,获得10
17秒前
17秒前
善良丹云发布了新的文献求助10
17秒前
17秒前
打打应助萝卜采纳,获得10
18秒前
顾矜应助Cm采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469408
求助须知:如何正确求助?哪些是违规求助? 4572465
关于积分的说明 14335882
捐赠科研通 4499363
什么是DOI,文献DOI怎么找? 2465032
邀请新用户注册赠送积分活动 1453554
关于科研通互助平台的介绍 1428085