Knowledge Graph Enhanced Language Models for Sentiment Analysis

计算机科学 常识 知识图 情绪分析 词典 人工智能 图形 自然语言处理 安全性令牌 知识表示与推理 理论计算机科学 计算机安全
作者
Jie Liu,Xuan Li,Linmei Hu,Yirui Zhang,Jinrui Wang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 447-464
标识
DOI:10.1007/978-3-031-47240-4_24
摘要

Pre-trained language models (LMs) have been widely used in sentiment analysis, and some recent works have focused on injecting sentiment knowledge from sentiment lexicons or structured commonsense knowledge from knowledge graphs (KGs) into pre-trained LMs, which have achieved remarkable success. However, these works often only obtain knowledge from a single source in either the sentiment lexicon or the KG, and only perform very shallow fusion of LM representations and external knowledge representations. Therefore, how to effectively extract multiple sources of external knowledge and fully integrate them with the LM representations is still an unresolved issue. In this paper, we propose a novel knowledge enhanced model for sentiment analysis (KSA), which simultaneously incorporates commonsense and sentiment knowledge as external knowledge, by constructing a heterogeneous Commonsense-Senti Knowledge Graph. Additionally, a separate global token and global node are added to the text sequence and constructed knowledge graph respectively, and a fusion unit is used to enable global information interaction between the different modalities, allowing them to perceive each other’s information and thereby improving the ability to perform sentiment analysis. Experiments on standard datasets show that our proposed KSA significantly outperforms the strong pre-trained baselines, and achieves new state-of-the-art results on most of the test datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
英姑应助畅快的静芙采纳,获得10
1秒前
1秒前
安详的母鸡完成签到,获得积分10
1秒前
包容的剑发布了新的文献求助10
1秒前
xiao金发布了新的文献求助10
2秒前
打打应助Tempo采纳,获得10
3秒前
3秒前
3秒前
3秒前
伯赏元彤发布了新的文献求助10
3秒前
6秒前
yosh发布了新的文献求助10
6秒前
个性尔槐完成签到,获得积分10
6秒前
7秒前
寻123发布了新的文献求助10
8秒前
yuefeng完成签到,获得积分10
8秒前
8秒前
周胎胎完成签到,获得积分10
8秒前
小希发布了新的文献求助10
9秒前
9秒前
wentong完成签到,获得积分10
10秒前
无辜安梦发布了新的文献求助10
10秒前
情怀应助LLL采纳,获得10
11秒前
小二郎应助哈哈哈哈采纳,获得10
12秒前
爆米花应助kk采纳,获得10
12秒前
12秒前
斯文败类应助俞思含采纳,获得10
15秒前
15秒前
15秒前
小希完成签到,获得积分10
15秒前
chengqin发布了新的文献求助10
15秒前
16秒前
想人陪的语风完成签到,获得积分20
16秒前
Leuk1完成签到 ,获得积分10
16秒前
17秒前
易安完成签到 ,获得积分10
18秒前
18秒前
厚朴发布了新的文献求助100
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3554493
求助须知:如何正确求助?哪些是违规求助? 3130313
关于积分的说明 9386036
捐赠科研通 2829580
什么是DOI,文献DOI怎么找? 1555633
邀请新用户注册赠送积分活动 726197
科研通“疑难数据库(出版商)”最低求助积分说明 715480