A Transferable Generative Framework for Multi-Label Zero-Shot Learning

人工智能 计算机科学 模式识别(心理学) 特征(语言学) 水准点(测量) 生成模型 判别式 图像(数学) 嵌入 班级(哲学) 对象(语法) 生成语法 大地测量学 语言学 哲学 地理
作者
Peirong Ma,Zhiquan He,Wu Ran,Hong Lu
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (5): 3409-3423 被引量:5
标识
DOI:10.1109/tcsvt.2023.3324648
摘要

Multi-label zero-shot learning (MLZSL) is a more realistic and challenging task than single-label zero-shot learning (SLZSL), which aims to recognize multiple unseen classes in a single image. To adapt generative models to the MLZSL task and better recognize multiple unseen object categories in an image, this paper proposes a Transferable Generative Framework (TGF), which consists of a Multi-Label Semantic Embedding Autoencoders (SEAs), a Semantic-Related Multi-Label Feature Transformation Network (FTN) and a Multi-Label Feature Generation Networks (FGNs). First, SEAs adaptively encodes the class-level word vectors corresponding to each sample containing different number of classes into sample-level semantic embeddings with the same dimension. Then, FTN transforms global features extracted by a CNN pre-trained on single-label images into features that are semantic-related and more suitable for multi-label classification. Finally, FGNs generates both global and local features to better recognize the dominant and minor object categories in a multi-label image, respectively. Extensive experiments on three benchmark datasets show that TGF significantly outperforms state-of-the-arts. Specifically, compared with the previous best generative MLZSL method ( i.e ., Gen-MLZSL), TGF improves the mAP of the ZSL (GZSL) task by 5.4% (6.9%), 20.5% (27.9%), and 2.4% (3.9%) on NUS-WIDE, Open Images, and MS-COCO datasets, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zpj完成签到 ,获得积分10
2秒前
5秒前
梧桐发布了新的文献求助10
7秒前
7秒前
7秒前
kiki发布了新的文献求助10
9秒前
manggggo应助博修采纳,获得10
11秒前
霍冰旋完成签到,获得积分10
12秒前
天天快乐应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
12秒前
12秒前
12秒前
12秒前
13秒前
14秒前
JamesPei应助荔刻UTD采纳,获得10
14秒前
善学以致用应助霍冰旋采纳,获得10
18秒前
21秒前
飘逸的凝荷完成签到,获得积分10
22秒前
酷波er应助SinaiPen采纳,获得10
24秒前
24秒前
hqq发布了新的文献求助30
25秒前
无花果应助hyfwkd采纳,获得10
26秒前
26秒前
26秒前
荔刻UTD发布了新的文献求助10
29秒前
29秒前
量子星尘发布了新的文献求助10
29秒前
热木发布了新的文献求助10
30秒前
32秒前
Wakey发布了新的文献求助10
33秒前
忧虑的冷霜完成签到,获得积分10
34秒前
35秒前
36秒前
Rita完成签到,获得积分10
36秒前
眼睛大雨筠应助欠虐宝宝采纳,获得30
37秒前
烟花应助阔达苡采纳,获得10
37秒前
hqq发布了新的文献求助30
39秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961075
求助须知:如何正确求助?哪些是违规求助? 3507282
关于积分的说明 11135478
捐赠科研通 3239777
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872379
科研通“疑难数据库(出版商)”最低求助积分说明 803150