On Exploring Multiplicity of Primitives and Attributes for Texture Recognition in the Wild

计算机科学 稳健性(进化) 人工智能 关系(数据库) 空间关系 模式识别(心理学) 代表(政治) 过程(计算) 感知 数据挖掘 生物 生物化学 化学 操作系统 政治 政治学 神经科学 法学 基因
作者
Wei Zhai,Yang Cao,Jing Zhang,Haiyong Xie,Dacheng Tao,Zheng-Jun Zha
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (1): 403-420 被引量:11
标识
DOI:10.1109/tpami.2023.3325230
摘要

Texture recognition is a challenging visual task since its multiple primitives or attributes can be perceived from the texture image under different spatial contexts. Existing approaches predominantly built upon CNN incorporate rich local descriptors with orderless aggregation to capture invariance to the spatial layout. However, these methods ignore the inherent structure relation organized by primitives and the semantic concept described by attributes, which are critical cues for texture representation. In this paper, we propose a novel Multiple Primitives and Attributes Perception network (MPAP) that extracts features by modeling the relation of bottom-up structure and top-down attribute in a multi-branch unified framework. A bottom-up process is first proposed to capture the inherent relation of various primitive structures by leveraging structure dependency and spatial order information. Then, a top-down process is introduced to model the latent relation of multiple attributes by transferring attribute-related features between adjacent branches. Moreover, an augmentation module is devised to bridge the gap between high-level attributes and low-level structure features. MPAP can learn representation through jointing bottom-up and top-down processes in a mutually reinforced manner. Experimental results on six challenging texture datasets demonstrate the superiority of MPAP over state-of-the-art methods in terms of accuracy, robustness, and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liuhaorana111_完成签到,获得积分20
1秒前
W星球Y族人完成签到,获得积分10
1秒前
1秒前
脑洞疼应助ZR666888采纳,获得10
2秒前
日月归尘完成签到,获得积分10
2秒前
啵啵龙发布了新的文献求助10
5秒前
沉默棉花糖完成签到,获得积分10
6秒前
鹏程应助拼搏君浩采纳,获得10
7秒前
8秒前
老马哥完成签到 ,获得积分0
8秒前
明月念斯人完成签到 ,获得积分10
10秒前
10秒前
淡然冬灵应助锅铲采纳,获得20
11秒前
Rabbit完成签到 ,获得积分10
13秒前
13秒前
现代书雪发布了新的文献求助10
14秒前
宁霸完成签到,获得积分0
15秒前
deniroming完成签到,获得积分0
19秒前
Jasper应助ZR666888采纳,获得10
20秒前
一行完成签到,获得积分10
20秒前
壮观小懒虫完成签到 ,获得积分10
21秒前
勤恳洙应助现代书雪采纳,获得30
25秒前
31秒前
嘿嘿应助科研通管家采纳,获得10
31秒前
在水一方应助科研通管家采纳,获得10
31秒前
桐桐应助刘慧鑫采纳,获得10
31秒前
NexusExplorer应助科研通管家采纳,获得10
31秒前
31秒前
充电宝应助科研通管家采纳,获得10
31秒前
斯文败类应助科研通管家采纳,获得10
31秒前
bkagyin应助科研通管家采纳,获得10
31秒前
32秒前
现代书雪完成签到,获得积分20
34秒前
35秒前
跳跃小伙完成签到 ,获得积分10
36秒前
36秒前
123345发布了新的文献求助10
37秒前
38秒前
zyyao发布了新的文献求助20
38秒前
流光发布了新的文献求助10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Using a Non-Equivalent Control Group Design in Educational Research 200
Public Health, Personal Health and Pills: Drug Entanglements and Pharmaceuticalised Governance 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5868245
求助须知:如何正确求助?哪些是违规求助? 6439836
关于积分的说明 15658050
捐赠科研通 4983670
什么是DOI,文献DOI怎么找? 2687581
邀请新用户注册赠送积分活动 1630242
关于科研通互助平台的介绍 1588346