Multi-omics Deep-learning Prediction of Homologous Recombination Deficiency-like Phenotype Improved Risk Stratification and Guided Therapeutic Decisions in Gynecological Cancers

队列 医学 生物标志物 肿瘤科 组学 个性化医疗 精密医学 比例危险模型 内科学 生物信息学 计算生物学 生物 病理 遗传学
作者
Yibo Zhang,Congcong Yan,Zijian Yang,Meng Zhou,Jie Sun
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:29 (3): 1861-1871 被引量:10
标识
DOI:10.1109/jbhi.2023.3308440
摘要

Homologous recombination deficiency (HRD) is a well-recognized important biomarker in determining the clinical benefits of platinum-based chemotherapy and PARP inhibitor therapy for patients diagnosed with gynecologic cancers. Accurate prediction of HRD phenotype remains challenging. Here, we proposed a novel Multi-Omics integrative Deep-learning framework named MODeepHRD for detecting HRD-positive phenotype. MODeepHRD utilizes a convolutional attention autoencoder that effectively leverages omics-specific and cross-omics complementary knowledge learning. We trained MODeepHRD on 351 ovarian cancer (OV) patients using transcriptomic, DNA methylation and mutation data, and validated it in 2133 OV samples of 22 datasets. The predicted HRD-positive tumors were significantly associated with improved survival (HR = 0.68; 95% CI, 0.60-0.77; log-rank p < 0.001 for meta-cohort; HR = 0.5; 95% CI, 0.29-0.86; log-rank p = 0.01 for ICGC-OV cohort) and higher response to platinum-based chemotherapy compared to predicted HRD-negative tumors. The translational potential of MODeepHRDs was further validated in multicenter breast and endometrial cancer cohorts. Furthermore, MODeepHRD outperforms conventional machine-learning methods and other similar task approaches. In conclusion, our study demonstrates the promising value of deep learning as a solution for HRD testing in the clinical setting. MODeepHRD holds potential clinical applicability in guiding patient risk stratification and therapeutic decisions, providing valuable insights for precision oncology and personalized treatment strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助lily采纳,获得10
刚刚
万能图书馆应助小肥采纳,获得10
刚刚
量子星尘发布了新的文献求助10
刚刚
kd完成签到,获得积分10
刚刚
哭泣剑封完成签到,获得积分10
刚刚
lucky发布了新的文献求助10
1秒前
1秒前
DLL完成签到 ,获得积分10
2秒前
小火苗发布了新的文献求助10
2秒前
查查发布了新的文献求助10
2秒前
CodeCraft应助筱曼采纳,获得30
3秒前
Ava应助科研废物采纳,获得10
3秒前
周洋完成签到,获得积分10
3秒前
3秒前
弗朗西斯卡完成签到,获得积分10
4秒前
虚拟的棉花糖完成签到,获得积分20
4秒前
fengqianxv完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
感性的芹菜完成签到,获得积分10
7秒前
7秒前
7秒前
sarah完成签到,获得积分10
7秒前
脑洞疼应助Ksharp10采纳,获得30
8秒前
酷波er应助Ksharp10采纳,获得30
8秒前
8秒前
蜘蛛道理发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
Ava应助明天儿采纳,获得10
9秒前
9秒前
112255完成签到,获得积分10
10秒前
10秒前
10秒前
mumu发布了新的文献求助50
10秒前
11秒前
布曲发布了新的文献求助10
11秒前
11秒前
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662961
求助须知:如何正确求助?哪些是违规求助? 3223721
关于积分的说明 9752858
捐赠科研通 2933645
什么是DOI,文献DOI怎么找? 1606229
邀请新用户注册赠送积分活动 758325
科研通“疑难数据库(出版商)”最低求助积分说明 734785