Assessing the Utility of ChatGPT Throughout the Entire Clinical Workflow: Development and Usability Study (Preprint)

可用性 临床决策支持系统 工作流程 医学诊断 人工智能 计算机科学 心理学 医学 医学物理学 机器学习 决策支持系统 病理 数据库 人机交互
作者
Arya Rao,Michael Pang,John Kim,Meghana Kamineni,Winston Lie,Anand Prasad,Adam Landman,Keith J. Dreyer,Marc D. Succi
标识
DOI:10.2196/preprints.48659
摘要

BACKGROUND Large language model (LLM)–based artificial intelligence chatbots direct the power of large training data sets toward successive, related tasks as opposed to single-ask tasks, for which artificial intelligence already achieves impressive performance. The capacity of LLMs to assist in the full scope of iterative clinical reasoning via successive prompting, in effect acting as artificial physicians, has not yet been evaluated. OBJECTIVE This study aimed to evaluate ChatGPT’s capacity for ongoing clinical decision support via its performance on standardized clinical vignettes. METHODS We inputted all 36 published clinical vignettes from the <i>Merck Sharpe &amp; Dohme (MSD) Clinical Manual</i> into ChatGPT and compared its accuracy on differential diagnoses, diagnostic testing, final diagnosis, and management based on patient age, gender, and case acuity. Accuracy was measured by the proportion of correct responses to the questions posed within the clinical vignettes tested, as calculated by human scorers. We further conducted linear regression to assess the contributing factors toward ChatGPT’s performance on clinical tasks. RESULTS ChatGPT achieved an overall accuracy of 71.7% (95% CI 69.3%-74.1%) across all 36 clinical vignettes. The LLM demonstrated the highest performance in making a final diagnosis with an accuracy of 76.9% (95% CI 67.8%-86.1%) and the lowest performance in generating an initial differential diagnosis with an accuracy of 60.3% (95% CI 54.2%-66.6%). Compared to answering questions about general medical knowledge, ChatGPT demonstrated inferior performance on differential diagnosis (β=–15.8%; <i>P</i>&lt;.001) and clinical management (β=–7.4%; <i>P</i>=.02) question types. CONCLUSIONS ChatGPT achieves impressive accuracy in clinical decision-making, with increasing strength as it gains more clinical information at its disposal. In particular, ChatGPT demonstrates the greatest accuracy in tasks of final diagnosis as compared to initial diagnosis. Limitations include possible model hallucinations and the unclear composition of ChatGPT’s training data set.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
科研通AI5应助cc采纳,获得10
2秒前
铜泰妍完成签到 ,获得积分10
3秒前
贝贝完成签到 ,获得积分10
8秒前
Lrcx完成签到 ,获得积分10
9秒前
Wen完成签到 ,获得积分10
10秒前
盘尼西林完成签到 ,获得积分10
12秒前
LOVE0077完成签到,获得积分10
15秒前
zhao完成签到,获得积分10
17秒前
BINBIN完成签到 ,获得积分10
27秒前
ambrose37完成签到 ,获得积分10
29秒前
量子星尘发布了新的文献求助10
35秒前
fufufu123完成签到 ,获得积分10
39秒前
开心的大娘完成签到,获得积分10
39秒前
www完成签到 ,获得积分10
41秒前
末末完成签到 ,获得积分10
51秒前
无为完成签到 ,获得积分10
52秒前
白嫖论文完成签到 ,获得积分10
54秒前
上官若男应助忧伤的步美采纳,获得10
57秒前
科研通AI2S应助科研通管家采纳,获得10
57秒前
1分钟前
从心随缘完成签到 ,获得积分10
1分钟前
花花发布了新的文献求助10
1分钟前
牛奶面包完成签到 ,获得积分10
1分钟前
1分钟前
岁月如歌完成签到 ,获得积分0
1分钟前
1分钟前
Li完成签到,获得积分10
1分钟前
张琨完成签到 ,获得积分10
1分钟前
1分钟前
sunnyqqz完成签到,获得积分10
1分钟前
热情的乘风完成签到,获得积分20
1分钟前
1分钟前
霍凡白完成签到,获得积分10
1分钟前
1分钟前
Feng发布了新的文献求助20
1分钟前
怕孤单的若颜完成签到 ,获得积分10
1分钟前
1分钟前
ruochenzu发布了新的文献求助10
1分钟前
zhongu发布了新的文献求助10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038039
求助须知:如何正确求助?哪些是违规求助? 3575756
关于积分的说明 11373782
捐赠科研通 3305574
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022