Assessing the Utility of ChatGPT Throughout the Entire Clinical Workflow: Development and Usability Study (Preprint)

可用性 临床决策支持系统 工作流程 医学诊断 人工智能 计算机科学 心理学 医学 医学物理学 机器学习 决策支持系统 病理 数据库 人机交互
作者
Arya Rao,Michael Pang,John Kim,Meghana Kamineni,Winston Lie,Anand Prasad,Adam Landman,Keith J. Dreyer,Marc D. Succi
标识
DOI:10.2196/preprints.48659
摘要

BACKGROUND Large language model (LLM)–based artificial intelligence chatbots direct the power of large training data sets toward successive, related tasks as opposed to single-ask tasks, for which artificial intelligence already achieves impressive performance. The capacity of LLMs to assist in the full scope of iterative clinical reasoning via successive prompting, in effect acting as artificial physicians, has not yet been evaluated. OBJECTIVE This study aimed to evaluate ChatGPT’s capacity for ongoing clinical decision support via its performance on standardized clinical vignettes. METHODS We inputted all 36 published clinical vignettes from the <i>Merck Sharpe &amp; Dohme (MSD) Clinical Manual</i> into ChatGPT and compared its accuracy on differential diagnoses, diagnostic testing, final diagnosis, and management based on patient age, gender, and case acuity. Accuracy was measured by the proportion of correct responses to the questions posed within the clinical vignettes tested, as calculated by human scorers. We further conducted linear regression to assess the contributing factors toward ChatGPT’s performance on clinical tasks. RESULTS ChatGPT achieved an overall accuracy of 71.7% (95% CI 69.3%-74.1%) across all 36 clinical vignettes. The LLM demonstrated the highest performance in making a final diagnosis with an accuracy of 76.9% (95% CI 67.8%-86.1%) and the lowest performance in generating an initial differential diagnosis with an accuracy of 60.3% (95% CI 54.2%-66.6%). Compared to answering questions about general medical knowledge, ChatGPT demonstrated inferior performance on differential diagnosis (β=–15.8%; <i>P</i>&lt;.001) and clinical management (β=–7.4%; <i>P</i>=.02) question types. CONCLUSIONS ChatGPT achieves impressive accuracy in clinical decision-making, with increasing strength as it gains more clinical information at its disposal. In particular, ChatGPT demonstrates the greatest accuracy in tasks of final diagnosis as compared to initial diagnosis. Limitations include possible model hallucinations and the unclear composition of ChatGPT’s training data set.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赵hb发布了新的文献求助10
2秒前
2秒前
小李发布了新的文献求助10
2秒前
瘦瘦不乐发布了新的文献求助10
3秒前
隐形如凡发布了新的文献求助30
3秒前
5秒前
wsqg123完成签到,获得积分10
6秒前
lanbing802完成签到,获得积分10
8秒前
8秒前
9秒前
ZZZ完成签到,获得积分10
10秒前
tangz发布了新的文献求助10
10秒前
西出钰门发布了新的文献求助30
11秒前
小李完成签到,获得积分10
11秒前
11秒前
科研通AI2S应助小李采纳,获得10
15秒前
zxj完成签到,获得积分10
15秒前
一颗红葡萄完成签到 ,获得积分10
16秒前
zhi-pengbao完成签到,获得积分0
17秒前
二小完成签到 ,获得积分20
18秒前
songjin完成签到 ,获得积分10
19秒前
22秒前
赵hb完成签到,获得积分10
22秒前
pluto应助Snoval采纳,获得10
23秒前
Frank应助Fairy采纳,获得10
23秒前
情怀应助韦涔采纳,获得10
26秒前
辞傲完成签到,获得积分10
26秒前
Sciencefool发布了新的文献求助30
27秒前
酷波er应助愤怒的水壶采纳,获得10
28秒前
Lucas应助张才豪采纳,获得10
29秒前
单纯晓绿完成签到,获得积分10
29秒前
dvdb完成签到,获得积分10
30秒前
英俊的铭应助zhi-pengbao采纳,获得10
30秒前
劲秉应助研友_EZ1GJL采纳,获得10
30秒前
韦涔发布了新的文献求助10
32秒前
33秒前
33秒前
33秒前
34秒前
雪白智宸完成签到 ,获得积分10
35秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3295440
求助须知:如何正确求助?哪些是违规求助? 2931477
关于积分的说明 8452201
捐赠科研通 2604083
什么是DOI,文献DOI怎么找? 1421500
科研通“疑难数据库(出版商)”最低求助积分说明 660955
邀请新用户注册赠送积分活动 643950