氧化应激
活性氧
丹参
GPX4
免疫印迹
色素性视网膜炎
脂质过氧化
化学
细胞生物学
生物
生物化学
视网膜
谷胱甘肽过氧化物酶
医学
超氧化物歧化酶
病理
基因
替代医学
中医药
作者
Yijing Yang,Ying Wang,Ying Deng,Jing Lu,Xiao Li,Jie Li,Ya-Sha Zhou,Fujiao Nie,Xiangdong Chen,Jun Peng,Tan Han-yu,Yuhui Qin,Qinghua Peng
标识
DOI:10.1016/j.biopha.2023.115547
摘要
To assess the impact of Fructus Lycii and Salvia miltiorrhiza Bunge extract (FSE) on retinitis pigmentosa (RP) and to explore the mechanisms by which FSE can prevent oxidative stress-induced photoreceptor ferroptosis in RP.Hydrogen peroxide(H2O2) was used to induce oxidative stress in 661 W cells, which were then examined using flow cytometry and enzyme linked immunosorbent assay (ELISA). Changes in mitochondria were observed by using an electron microscope to characterize the ferroptosis of the cells. The protective effect of FSE on the retina function and structure of rd10 mice was evaluated using histopathological examination, fundus photographs, and electroretinography (ERG). Protein expression levels of Tumor Protein p53 (P53), Solute Carrier Family 7 Member 11 (SLC7A11), Glutathione peroxidase 4 (GPX4), Arachidonate-12-Lipoxygenase (ALOX12), and Dipeptidyl peptidase 4 (DPP4) were evaluated by Western blot assays in Vivo and in Vitro.H2O2-induced 661 W cells increased oxidative stress products and P53 and ALOX12, decreasing the expression of SLC7A11, GPX4, and DPP4. GPX4 activator does not reduce reactive oxygen species (ROS) generation and has little effect on ferroptosis. Fer-1 and FSE attenuate ROS generation and inhibit ferroptosis of photoreceptors in RP via inhibited P53 expression and increased SLC7A11 and GPX4 expression.FSE may be available in clinical therapeutics to alleviating RP and the mechanism by which inhibits ferroptosis of photoreceptors following oxidative stress via the P53/ SLC7A11 pathway.
科研通智能强力驱动
Strongly Powered by AbleSci AI