空位缺陷
石墨烯
阳极
扩散
材料科学
化学物理
带隙
电化学
轨道能级差
纳米技术
化学
化学工程
分子
热力学
物理化学
结晶学
电极
光电子学
有机化学
物理
工程类
作者
Zichun Zhang,Ge Zhang,Huangkai Wang,Chuang Wang,Qianmei Li,Xianyou Wang,Yong Pei,Haibo Wang,Zhenhua Yang
标识
DOI:10.1016/j.cej.2023.146180
摘要
CuP2 is considered as a promising anode material for sodium-ion batteries due to its considerable theoretical capacity (1280 mAh/g), but it suffers from rapid decline of capacity and its cyclic reversibility should be further improved. As far as possible, preventing reaction energy barrier from sudden change and holding back Cu diffusion at atomic level both are key strategies to solve these problems occurring on the electrochemical reaction between CuP2 and Na. Based on the surface anchoring effect and excellent electronic conductivity of single vacancy graphene (SVG), first principles calculations have been carried out to capture the key role of SVG in regulating the electrochemical properties of CuP2. Firstly, among various (CuP2)n (n = 1–6) clusters, haploid CuP2 cluster possesses the fairly stable structure due to its highest HOMO-LUMO gap (2.45 eV) and lowest vertical electronic affinity energy (0.64 eV). Most of all, CuP2/SVG composites exhibit much more stable reaction energy barrier than CuP2 during their Na storage. It is attributed to the strong C–P and Cu–C anchoring effect between CuP2 and SVG, slowing the break of Cu–P bond. This contributes to holding back volume mutations of CuP2/SVG during Na storage. Besides, after conversion reaction between CuP2/SVG and Na, Cu showsdiffusion energy barrier of 0.75 eV, exhibiting great difficulty for its migration in reaction products. Compared with CuP2, CuP2/SVG not only exhibits more stable voltage distribution, but also it has much higher theoretical capacity (1851 mAh/g vs.1280 mAh/g). That is to say. CuP2/SVG can be acted as anode materials for Na-ion batteries with high energy density. And our results also provide a new way to design long-life CuP2-based anode materials for Na-ion batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI