BioPRO: Context-Infused Prompt Learning for Biomedical Entity Linking

计算机科学 背景(考古学) 编码器 模棱两可 光学(聚焦) 匹配(统计) 人工智能 代表(政治) 情报检索 多样性(控制论) 深度学习 自然语言处理 答疑 程序设计语言 数学 古生物学 统计 物理 政治 法学 政治学 光学 生物 操作系统
作者
Tiantian Zhu,Yang Qin,Ming Feng,Qingcai Chen,Baotian Hu,Yang Xiang
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 374-385
标识
DOI:10.1109/taslp.2023.3331149
摘要

Recent research tends to address the biomedical entity linking problem in a unified framework solely based on surface form matching between mentions and entities. Specifically, these methods focus on addressing the variety challenge of the heterogeneous naming of biomedical concepts. Yet, the ambiguity challenge that the same word under different contexts can be used to refer to distinct concepts is usually ignored. To address this challenge, we propose BioPRO, a two-stage entity linking algorithm to enhance the biomedical entity representations based on context-infused prompt learning. The first stage includes a coarse-grained retrieval from a representation space defined by a bi-encoder that independently embeds the mention and entity's surface forms. Unlike previous one-model-fits-all systems, each candidate is then re-ranked with a fine-grained encoder based on prompt-tuning that sufficiently stimulates knowledge in contextual information of mentions and entities. Furthermore, the trained fine-grained encoder can be utilized to generate deep representations of bio-entities and boost candidate retrieval in the first stage. Extensive experiments show that our model achieves promising performance improvements compared with several state-of-the-art (SOTA) techniques on 4 biomedical corpora. We also observe by cases that the proposed context-infused prompt-tuning strategy is effective in solving both the variety and ambiguity challenges in the linking task.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_宋文昊完成签到,获得积分10
1秒前
科研通AI6应助稳重的凡桃采纳,获得10
1秒前
1秒前
1秒前
1秒前
2秒前
Espoir完成签到,获得积分10
2秒前
3秒前
嘿嘿发布了新的文献求助30
3秒前
酷波er应助Nell采纳,获得10
3秒前
jie完成签到,获得积分10
3秒前
3秒前
4秒前
5秒前
丘比特应助水123采纳,获得10
5秒前
5秒前
桐桐应助zhiyuanren采纳,获得10
5秒前
5秒前
李绅语发布了新的文献求助10
5秒前
鳗鱼忆南发布了新的文献求助10
7秒前
syh完成签到,获得积分10
7秒前
现代菠萝发布了新的文献求助10
7秒前
9秒前
桐桐应助chrysan采纳,获得10
9秒前
eric发布了新的文献求助10
9秒前
麻喽发布了新的文献求助10
10秒前
科研通AI6应助LAYWL采纳,获得10
10秒前
10秒前
领导范儿应助张景峒采纳,获得10
10秒前
慕青应助zlf采纳,获得10
11秒前
闫辰完成签到 ,获得积分10
11秒前
latata完成签到,获得积分10
11秒前
11秒前
脑洞疼应助JY采纳,获得10
11秒前
666完成签到,获得积分10
11秒前
万能图书馆应助辛勤又蓝采纳,获得10
13秒前
Os发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
14秒前
Vivien完成签到,获得积分10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5593599
求助须知:如何正确求助?哪些是违规求助? 4679468
关于积分的说明 14810164
捐赠科研通 4644508
什么是DOI,文献DOI怎么找? 2534573
邀请新用户注册赠送积分活动 1502632
关于科研通互助平台的介绍 1469366