Using Machine Learning to Predict Response to Image-guided Therapies for Hepatocellular Carcinoma

医学 肝细胞癌 无线电技术 人工智能 放射科 放射基因组学 急诊分诊台 机器学习 医学物理学 计算机科学 内科学 急诊医学
作者
Celina Hsieh,Amanda Laguna,Ian Ikeda,Aaron W. P. Maxwell,Julius Chapiro,G. Nadolski,Zhicheng Jiao,Harrison X. Bai
出处
期刊:Radiology [Radiological Society of North America]
卷期号:309 (2) 被引量:8
标识
DOI:10.1148/radiol.222891
摘要

Interventional oncology is a rapidly growing field with advances in minimally invasive image-guided local-regional treatments for hepatocellular carcinoma (HCC), including transarterial chemoembolization, transarterial radioembolization, and thermal ablation. However, current standardized clinical staging systems for HCC are limited in their ability to optimize patient selection for treatment as they rely primarily on serum markers and radiologist-defined imaging features. Given the variation in treatment responses, an updated scoring system that includes multidimensional aspects of the disease, including quantitative imaging features, serum markers, and functional biomarkers, is needed to optimally triage patients. With the vast amounts of numerical medical record data and imaging features, researchers have turned to image-based methods, such as radiomics and artificial intelligence (AI), to automatically extract and process multidimensional data from images. The synthesis of these data can provide clinically relevant results to guide personalized treatment plans and optimize resource utilization. Machine learning (ML) is a branch of AI in which a model learns from training data and makes effective predictions by teaching itself. This review article outlines the basics of ML and provides a comprehensive overview of its potential value in the prediction of treatment response in patients with HCC after minimally invasive image-guided therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
biye完成签到,获得积分10
刚刚
南南发布了新的文献求助10
刚刚
1秒前
GYYYYYYYYYYY完成签到,获得积分10
1秒前
陌路孤星发布了新的文献求助10
1秒前
1秒前
wwz应助我爱科研采纳,获得10
1秒前
商羽完成签到,获得积分10
1秒前
2秒前
Max完成签到,获得积分10
3秒前
3秒前
传奇3应助Don采纳,获得10
3秒前
xiaoxina完成签到,获得积分10
3秒前
尤尔竹完成签到 ,获得积分10
4秒前
晨晨发布了新的文献求助10
5秒前
宋文娟完成签到,获得积分10
6秒前
6秒前
积极书双发布了新的文献求助10
7秒前
DW发布了新的文献求助10
7秒前
壶壶壶完成签到 ,获得积分10
7秒前
二二完成签到,获得积分10
7秒前
8秒前
慕青应助研友_ngJQzL采纳,获得10
8秒前
羊踯躅完成签到,获得积分10
8秒前
南南完成签到,获得积分10
8秒前
8秒前
Lvhao应助斯人采纳,获得10
9秒前
9秒前
Mr.D完成签到,获得积分20
9秒前
hh完成签到,获得积分10
11秒前
11秒前
11秒前
InfoNinja应助djd采纳,获得30
11秒前
CodeCraft应助123采纳,获得10
12秒前
兮槿完成签到,获得积分10
12秒前
Mr.D发布了新的文献求助10
12秒前
13秒前
14秒前
晨晨完成签到,获得积分20
15秒前
KissesU完成签到 ,获得积分10
15秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160172
求助须知:如何正确求助?哪些是违规求助? 2811172
关于积分的说明 7891237
捐赠科研通 2470284
什么是DOI,文献DOI怎么找? 1315398
科研通“疑难数据库(出版商)”最低求助积分说明 630828
版权声明 602022