A Variational Auto-Encoder-Based Multisource Deep Domain Adaptation Model Using Optimal Transport for Cross-Machine Fault Diagnosis of Rotating Machinery

计算机科学 编码器 断层(地质) 领域(数学分析) 人工智能 自编码 算法 人工神经网络 数学 操作系统 地质学 数学分析 地震学
作者
Shi-Zheng Yuan,Zhaohua Liu,Hua‐Liang Wei,Lei Chen,Mingyang Lv,Xiaohua Li
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-11 被引量:8
标识
DOI:10.1109/tim.2023.3331436
摘要

In recent years, most existing domain-adapted bearing fault diagnoses for rotating machinery have been designed to decrease domain drifts for various operating conditions with an assumption that sufficient tag data are available. To overcome data scarcity, a possible solution is to use fault information of other machines of the same category to diagnose the status of a target machine (i.e., cross-machine diagnosis). This article proposes a variational auto-encoder (VAE)-based multisource deep domain adaptation model using optimal transport for cross-machine fault diagnosis of rotating machinery (named MDVAEOT). This is fundamentally different from most diagnostic models where both train and test data belong to the same machine. First, it uses unlabeled samples of the machines to be diagnosed to establish the target dataset and faulty samples of machines of the same category (containing labels) to form the source dataset. Additionally, the method performs feature extraction on the dataset using VAE networks and improves the reliability of extracted data features by the approximation of fixed probability. Finally, to shrink cross-machine differences between the two domains, we introduce optimal transport (OT) theory. OT distance is used to share fault-related features between the two domains mentioned above to complete the cross-machine diagnosis task. Better accuracy and timeliness are offered by this proposed means compared to other existing intelligent methods in this field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
专注的问寒举报潘多拉求助涉嫌违规
1秒前
1秒前
ZM完成签到 ,获得积分10
1秒前
zzy完成签到,获得积分10
1秒前
贤君发布了新的文献求助10
1秒前
伍六七发布了新的文献求助10
2秒前
隐形曼青应助lcj采纳,获得10
2秒前
搜集达人应助YOU采纳,获得10
2秒前
qq大魔王发布了新的文献求助10
3秒前
3秒前
依依一一发布了新的文献求助10
4秒前
zz320发布了新的文献求助20
7秒前
8秒前
年轻迪奥发布了新的文献求助10
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
华仔应助嘿嘿啊哈采纳,获得10
9秒前
10秒前
10秒前
十七完成签到 ,获得积分10
10秒前
熠旅完成签到,获得积分10
10秒前
11秒前
pluto应助隐形小鸽子采纳,获得10
11秒前
11秒前
12秒前
12333发布了新的文献求助10
13秒前
14秒前
沉静傻姑发布了新的文献求助10
14秒前
小蘑菇应助hyodong采纳,获得10
14秒前
小小户完成签到 ,获得积分10
15秒前
lcj发布了新的文献求助10
15秒前
隐形曼青应助bai采纳,获得10
15秒前
15秒前
16秒前
赎罪发布了新的文献求助50
16秒前
17秒前
刘小蕊发布了新的文献求助10
17秒前
enchyu完成签到 ,获得积分10
18秒前
NexusExplorer应助太阳博士采纳,获得10
18秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695061
求助须知:如何正确求助?哪些是违规求助? 5099914
关于积分的说明 15215127
捐赠科研通 4851509
什么是DOI,文献DOI怎么找? 2602393
邀请新用户注册赠送积分活动 1554207
关于科研通互助平台的介绍 1512167