Spectral-Spatial Anti-Interference NMF for Hyperspectral Unmixing

高光谱成像 非负矩阵分解 端元 模式识别(心理学) 计算机科学 空间分析 人工智能 矩阵分解 稳健性(进化) 主成分分析 转化(遗传学) 加权 遥感 数学 地理 放射科 特征向量 物理 基因 医学 化学 量子力学 生物化学
作者
Tingting Yang,Meiping Song,Sen Li,Yulei Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-17
标识
DOI:10.1109/tgrs.2023.3314902
摘要

Hyperspectral unmixing could provide decomposition for small units in hyperspectral image, allowing accurate analysis of ground objects. Unfortunately, interference such as noise and spectral variability prevalent in hyperspectral data poses a serious challenge for it. Accordingly, this paper proposes a spectral-spatial anti-interference nonnegative matrix factorization (NMF) algorithm (SSAINMF), which improves the performance of spectral unmixing from both spectral and spatial perspectives. Specifically, the original data is analyzed and transformed into a statistical domain where the information of each dimension can be re-expressed, followed by a proof of restricted isometric and restricted isospectral properties for endmembers and abundances between the original domain and the transformation domain. To obtain more reliable endmembers, weighting is then applied to each dimension in the transformation domain depending on the priority coefficients quantified by their contribution to data representation, with the influence of anomalous and noisy data weakened and the priorities of low-rank information emphasized. Finally, superpixels are exploited to induce local similarity and structural sparsity of abundances within the neighborhood, which reduces the sensitivity to spatial noise and spectral variability. From experimental results on synthetic and real data sets, the proposed SSAINMF has demonstrated effectiveness in decomposing mixed pixels, with better robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李爱国应助Bran采纳,获得10
1秒前
迷路毛豆发布了新的文献求助30
1秒前
2秒前
2秒前
清爽的尔冬完成签到,获得积分10
2秒前
3秒前
朵朵发布了新的文献求助10
3秒前
麻辣薯条发布了新的文献求助10
3秒前
嘴嘴是大嘴007完成签到,获得积分0
3秒前
4秒前
4秒前
Summer发布了新的文献求助30
4秒前
4秒前
foreverchoi完成签到,获得积分10
5秒前
6秒前
研友_VZG7GZ应助安然采纳,获得10
6秒前
迷路毛豆完成签到,获得积分10
7秒前
7秒前
ED应助PKU摸鱼小能手采纳,获得10
8秒前
科研小白发布了新的文献求助10
9秒前
斯文败类应助威武从霜采纳,获得10
9秒前
a111完成签到,获得积分10
9秒前
fuyue发布了新的文献求助10
10秒前
析界成微完成签到 ,获得积分10
10秒前
11秒前
美丽的雨珍完成签到,获得积分10
11秒前
ysw发布了新的文献求助10
12秒前
orixero应助123采纳,获得10
12秒前
Bruce Zhu完成签到,获得积分10
12秒前
14秒前
TiAmo完成签到,获得积分10
14秒前
庾天磊完成签到 ,获得积分10
14秒前
皮老八发布了新的文献求助10
14秒前
dream发布了新的文献求助10
15秒前
16秒前
17秒前
18秒前
19秒前
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952150
求助须知:如何正确求助?哪些是违规求助? 3497645
关于积分的说明 11088172
捐赠科研通 3228209
什么是DOI,文献DOI怎么找? 1784718
邀请新用户注册赠送积分活动 868855
科研通“疑难数据库(出版商)”最低求助积分说明 801281