Deep reinforcement learning based energymanagement strategy considering running costs and energy source aging for fuel cell hybrid electric vehicle

强化学习 能源管理 计算机科学 电池(电) 汽车工程 能量(信号处理) 电动汽车 工作(物理) 功能(生物学) 功率(物理) 模拟 工程类 人工智能 机械工程 数学 进化生物学 生物 量子力学 统计 物理
作者
Hao Yin,Zehao Kang,Xuping Mao,Haoqin Hu,Jiaqi Tan,Dongji Xuan
出处
期刊:Energy [Elsevier]
卷期号:283: 129177-129177 被引量:3
标识
DOI:10.1016/j.energy.2023.129177
摘要

The main contribution of this study is to integrate energy source aging and running costs into the deep reinforcement learning (DRL) based EMS of fuel cell hybrid electric vehicles (FCHEV). For the FCHEV, a multi-objective energy management strategy (EMS) based on twin delayed deep deterministic policy gradient (TD3) is proposed, which aims to simultaneously reduce energy source degradation and lower running costs. To achieve this, the paper innovatively designs the reward function and it's comparative approach. Additionally, it verifies the superiority of the proposed EMS over other EMS based on continuous action space algorithm, including previous action guided deep deterministic policy gradient (PA-DDPG) and soft actor-critic (SAC). Lastly, the agent's action output is changed from fuel cell (FC) current to FC power ratio, and a comparative analysis on results generated by different action outputs is conducted. Simulation results show that the proposed EMS can reduce the running costs while extending the lifespan of battery and FC efficiently. This work holds significant practical significance in the energy distribution of automobiles.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风趣的灵枫完成签到 ,获得积分10
刚刚
1秒前
1秒前
1秒前
Andrew发布了新的文献求助10
1秒前
1秒前
Fang Xianxin完成签到,获得积分10
2秒前
高高晓啸发布了新的文献求助10
2秒前
2秒前
light123完成签到,获得积分10
3秒前
研友_LOqqmZ发布了新的文献求助10
3秒前
充电宝应助碧蓝问玉采纳,获得10
3秒前
思源应助范峰源采纳,获得15
4秒前
FashionBoy应助阳光的天与采纳,获得10
4秒前
4秒前
SU Edward发布了新的文献求助10
4秒前
大模型应助韶邑采纳,获得10
4秒前
起司猫完成签到 ,获得积分10
5秒前
浩然山河完成签到,获得积分10
5秒前
wanci应助悲凉的老虎采纳,获得10
5秒前
破空发布了新的文献求助10
6秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
8秒前
香蕉觅云应助perdgs采纳,获得10
9秒前
9秒前
无极微光应助jelly采纳,获得20
9秒前
量子星尘发布了新的文献求助10
10秒前
小树发布了新的文献求助10
10秒前
10秒前
清醒完成签到,获得积分10
10秒前
11秒前
11秒前
dd完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
我是老大应助Pengcheng采纳,获得10
13秒前
你说完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718168
求助须知:如何正确求助?哪些是违规求助? 5250844
关于积分的说明 15284812
捐赠科研通 4868418
什么是DOI,文献DOI怎么找? 2614132
邀请新用户注册赠送积分活动 1564020
关于科研通互助平台的介绍 1521476