Research on automatic classification and detection of chicken parts based on deep learning algorithm

人工智能 计算机科学 图像处理 鉴定(生物学) 模式识别(心理学) 集合(抽象数据类型) 过程(计算) 图像(数学) 植物 生物 程序设计语言 操作系统
作者
Yan Chen,X. -S. Peng,Lu Cai,Jiao Ming,Dandan Fu,Chen Xu,Peng Zhang
出处
期刊:Journal of Food Science [Wiley]
卷期号:88 (10): 4180-4193
标识
DOI:10.1111/1750-3841.16747
摘要

Accurate classification and identification of chicken parts are critical to improve the productivity and processing speed in poultry processing plants. However, the overlapping of chicken parts has an impact on the effectiveness of the identification process. To solve this issue, this study proposed a real-time classification and detection method for chicken parts, utilizing YOLOV4 deep learning. The method can identify segmented chicken parts on the assembly line in real time and accurately, thus improving the efficiency of poultry processing. First, 600 images containing multiple chicken part samples were collected to build a chicken part dataset after using the image broadening technique, and then the dataset was divided according to the 6:2:2 division principle, with 1200 images as the training set, 400 images as the test set, and 400 images as the validation set. Second, we utilized the single-stage target detector YOLO to predict and calculate the chicken part images, obtaining the categories and positions of the chicken leg, chicken wing, and chicken breast in the image. This allowed us to achieve real-time classification and detection of chicken parts. This approach enabled real-time and efficient classification and detection of chicken parts. Finally, the mean average precision (mAP) and the processing time per image were utilized as key metrics to evaluate the effectiveness of the model. In addition, four other target detection algorithms were introduced for comparison with YOLOV4-CSPDarknet53 in this study, which include YOLOV3-Darknet53, YOLOV3-MobileNetv3, SSD-MobileNetv3, and SSD-VGG16. A comprehensive comparison test was conducted to assess the classification and detection performance of these models for chicken parts. Finally, for the chicken part dataset, the mAP of the YOLOV4-CSPDarknet53 model was 98.86% on a single image with an inference speed of 22.2 ms, which was higher than the other four models of YOLOV3-Darknet53, YOLOV3-MobileNetv3, SSD-MobileNetv3, and SSD-VGG16 mAP by 3.27%, 3.78%, 6.91%, and 6.13%, respectively. The average detection time was reduced by 13, 1.9, 6.2, and 20.3 ms, respectively. In summary, the chicken part classification and detection method proposed in this study offers numerous benefits, including the ability to detect multiple chicken parts simultaneously, as well as delivering high levels of accuracy and speed. Furthermore, this approach effectively addresses the issue of accurately identifying individual chicken parts in the presence of occlusion, thereby reducing waste on the assembly line. PRACTICAL APPLICATION: The aim of this study is to offer visual technical assistance in minimizing wastage and resource depletion during the sorting and cutting of chicken parts in poultry production and processing facilities. Furthermore, considering the diverse demands and preferences regarding chicken parts, this research can facilitate product processing that caters specifically to consumer preferences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
英语六级发布了新的文献求助10
3秒前
3秒前
妮可罗宾完成签到 ,获得积分10
4秒前
李Sir发布了新的文献求助20
5秒前
5秒前
LLLL发布了新的文献求助10
5秒前
qian完成签到 ,获得积分10
6秒前
儒雅的豁完成签到,获得积分10
7秒前
SYLH应助jiajiajai采纳,获得10
8秒前
cz发布了新的文献求助10
8秒前
科研通AI2S应助LL采纳,获得10
8秒前
FashionBoy应助GA采纳,获得10
9秒前
赘婿应助轻松的忆彤采纳,获得10
10秒前
z7486发布了新的文献求助10
10秒前
11秒前
15秒前
aa完成签到,获得积分10
16秒前
陈少华完成签到 ,获得积分10
17秒前
17秒前
科研通AI2S应助自由寄柔采纳,获得10
17秒前
李志超完成签到,获得积分10
18秒前
高挑的小蕊完成签到,获得积分10
18秒前
Xiaoxiao应助CC柚采纳,获得30
21秒前
YG完成签到,获得积分20
21秒前
葛力发布了新的文献求助10
21秒前
22秒前
英姑应助科研通管家采纳,获得10
22秒前
SciGPT应助科研通管家采纳,获得10
22秒前
NexusExplorer应助科研通管家采纳,获得10
23秒前
情怀应助科研通管家采纳,获得30
23秒前
CipherSage应助科研通管家采纳,获得10
23秒前
23秒前
MXene应助科研通管家采纳,获得20
23秒前
JamesPei应助科研通管家采纳,获得10
23秒前
我是老大应助科研通管家采纳,获得10
23秒前
Akim应助科研通管家采纳,获得10
23秒前
所所应助科研通管家采纳,获得10
23秒前
Jasper应助科研通管家采纳,获得10
23秒前
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967482
求助须知:如何正确求助?哪些是违规求助? 3512759
关于积分的说明 11164944
捐赠科研通 3247740
什么是DOI,文献DOI怎么找? 1794021
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804517