Research on automatic classification and detection of chicken parts based on deep learning algorithm

人工智能 计算机科学 图像处理 鉴定(生物学) 模式识别(心理学) 集合(抽象数据类型) 过程(计算) 图像(数学) 植物 生物 程序设计语言 操作系统
作者
Yan Chen,X. -S. Peng,Lu Cai,Jiao Ming,Dandan Fu,Chen Xu,Peng Zhang
出处
期刊:Journal of Food Science [Wiley]
卷期号:88 (10): 4180-4193
标识
DOI:10.1111/1750-3841.16747
摘要

Accurate classification and identification of chicken parts are critical to improve the productivity and processing speed in poultry processing plants. However, the overlapping of chicken parts has an impact on the effectiveness of the identification process. To solve this issue, this study proposed a real-time classification and detection method for chicken parts, utilizing YOLOV4 deep learning. The method can identify segmented chicken parts on the assembly line in real time and accurately, thus improving the efficiency of poultry processing. First, 600 images containing multiple chicken part samples were collected to build a chicken part dataset after using the image broadening technique, and then the dataset was divided according to the 6:2:2 division principle, with 1200 images as the training set, 400 images as the test set, and 400 images as the validation set. Second, we utilized the single-stage target detector YOLO to predict and calculate the chicken part images, obtaining the categories and positions of the chicken leg, chicken wing, and chicken breast in the image. This allowed us to achieve real-time classification and detection of chicken parts. This approach enabled real-time and efficient classification and detection of chicken parts. Finally, the mean average precision (mAP) and the processing time per image were utilized as key metrics to evaluate the effectiveness of the model. In addition, four other target detection algorithms were introduced for comparison with YOLOV4-CSPDarknet53 in this study, which include YOLOV3-Darknet53, YOLOV3-MobileNetv3, SSD-MobileNetv3, and SSD-VGG16. A comprehensive comparison test was conducted to assess the classification and detection performance of these models for chicken parts. Finally, for the chicken part dataset, the mAP of the YOLOV4-CSPDarknet53 model was 98.86% on a single image with an inference speed of 22.2 ms, which was higher than the other four models of YOLOV3-Darknet53, YOLOV3-MobileNetv3, SSD-MobileNetv3, and SSD-VGG16 mAP by 3.27%, 3.78%, 6.91%, and 6.13%, respectively. The average detection time was reduced by 13, 1.9, 6.2, and 20.3 ms, respectively. In summary, the chicken part classification and detection method proposed in this study offers numerous benefits, including the ability to detect multiple chicken parts simultaneously, as well as delivering high levels of accuracy and speed. Furthermore, this approach effectively addresses the issue of accurately identifying individual chicken parts in the presence of occlusion, thereby reducing waste on the assembly line. PRACTICAL APPLICATION: The aim of this study is to offer visual technical assistance in minimizing wastage and resource depletion during the sorting and cutting of chicken parts in poultry production and processing facilities. Furthermore, considering the diverse demands and preferences regarding chicken parts, this research can facilitate product processing that caters specifically to consumer preferences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YanXT发布了新的文献求助30
刚刚
基拉发布了新的文献求助10
1秒前
2秒前
OIC发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
5秒前
7秒前
小铭发布了新的文献求助10
9秒前
一路生花完成签到,获得积分10
9秒前
欢喜的元蝶完成签到,获得积分10
10秒前
11秒前
温暖的天与完成签到 ,获得积分10
12秒前
坚强的初夏完成签到,获得积分10
13秒前
Hello应助英语六级采纳,获得10
14秒前
YanXT完成签到,获得积分10
14秒前
完美世界应助ZHI采纳,获得10
15秒前
不语发布了新的文献求助10
16秒前
16秒前
17秒前
叮叮叮铛完成签到,获得积分10
18秒前
Jasper应助基拉采纳,获得10
21秒前
22秒前
Alan发布了新的文献求助10
22秒前
22秒前
22秒前
23秒前
23秒前
不语完成签到,获得积分10
24秒前
wlscj举报lq求助涉嫌违规
24秒前
changping应助木子雨采纳,获得10
25秒前
贾明灵发布了新的文献求助10
25秒前
25秒前
科研通AI6应助和谐的芷文采纳,获得10
25秒前
blingcmeng发布了新的文献求助10
27秒前
不爱吃魔芋完成签到,获得积分10
27秒前
科研通AI5应助anton采纳,获得10
28秒前
zsy完成签到,获得积分10
28秒前
anhao发布了新的文献求助10
29秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5218912
求助须知:如何正确求助?哪些是违规求助? 4392767
关于积分的说明 13677175
捐赠科研通 4255477
什么是DOI,文献DOI怎么找? 2334980
邀请新用户注册赠送积分活动 1332572
关于科研通互助平台的介绍 1286834