材料科学
金属间化合物
体积分数
层错能
极限抗拉强度
复合材料
材料的强化机理
异质结
应变硬化指数
可塑性
结构材料
冶金
位错
合金
光电子学
作者
S.K. Guo,Zhaolong Ma,G.H. Xia,Xiaoyan Li,Ziqi Xu,Wenzhe Li,Xueying Jin,Xingwang Cheng
出处
期刊:Acta Materialia
[Elsevier]
日期:2023-11-03
卷期号:263: 119492-119492
被引量:21
标识
DOI:10.1016/j.actamat.2023.119492
摘要
Nanoprecipitate-strengthened medium/high entropy alloys (M/HEAs) with ultrahigh strengths and unusual physical properties represent promising candidates for structural applications. However, further strengthening these materials usually relies on increasing the volume fraction of nanoprecipitates and/or introducing harder intermetallics that inevitably sacrifice the ductility. Here, we report a strategy to break this trade-off in a Co-Cr-Ni-based MEA by architecting a hierarchical heterostructure that integrates high-volume fraction (up to ∼30%) D022-γ'' nanoprecipitates, shearable and non-shearable intermetallic particles, with a low stacking fault energy (SFE) matrix with heterogeneous grain structure. This hierarchical heterostructure can arouse hybrid strengthening mechanisms and lead to cross-scale and dynamic strain partitioning during plastic deformation, contributing to a superior strain-hardening capability and an excellent combination of the yield / ultimate tensile strength of 1323 MPa / 1690 MPa and 29% tensile elongation. This study provides a promising paradigm to design ultrastrong and ductile metallic materials via controlling multiscale microstructural heterogeneities.
科研通智能强力驱动
Strongly Powered by AbleSci AI