控制理论(社会学)
电力系统
相量
增益调度
控制工程
系统标识
工程类
卡尔曼滤波器
控制器(灌溉)
计算机科学
操作点
水准点(测量)
控制系统
功率(物理)
电子工程
数据建模
农学
物理
控制(管理)
软件工程
大地测量学
量子力学
人工智能
地理
电气工程
生物
作者
Abhineet Prakash,Mohamed Shawky El Moursi,S. K. Parida,Ehab F. El-Saadany
出处
期刊:IEEE Transactions on Power Systems
[Institute of Electrical and Electronics Engineers]
日期:2023-01-01
卷期号:: 1-13
标识
DOI:10.1109/tpwrs.2023.3321674
摘要
Low damping inter-area oscillations (IAOs) can jeopardize the power system stability if left unaddressed. This paper introduces an adaptive wide-area damping controller (WADC) utilizing supplementary input through converters of wind turbine system (WTS). In practical power system, simultaneously obtaining all system parameters is an infeasible task. Hence, the system identification is carried out between input location and output feedback signals using autoregressive exogenous (ARX) technique. In addition, a decentralized dynamic state estimation based on extended Kalman filter (EKF) is leveraged to estimate the feedback signals using classical model of the synchronous generators (SGs) and phasor data collected from the generator buses. Using the identified system models and estimated feedback signals, modal linear quadratic Gaussian (MLQG) controllers are designed for different scenarios like change in operating point and time delay in feedback signals. Finally, a modified interacting multiple model (IMM) strategy is employed for adaptive gain scheduling in order to ensure robust damping performance of the proposed WADC. The suggested strategy is verified on IEEE benchmark 4-machine, 11-bus system and 16-machine, 68-bus system. The results of these comprehensive case studies demonstrate that the proposed modified IMM based WADC strategy to damp IAOs is robust to operating scenarios, even with unknown power system dynamics.
科研通智能强力驱动
Strongly Powered by AbleSci AI