材料科学
纳米纤维
纳米技术
电极
储能
纤维素
逐层
电化学
图层(电子)
化学工程
化学
量子力学
物理
工程类
物理化学
功率(物理)
作者
Keke Du,Dongyan Zhang,Shuangbao Zhang,Kam Chiu Tam
出处
期刊:Small
[Wiley]
日期:2023-09-19
卷期号:20 (5)
被引量:8
标识
DOI:10.1002/smll.202304739
摘要
The depletion of fossil fuel resources and its impact on the environment provide a compelling motivation for the development of sustainable energy sources to meet the increasing demand for energy. Accordingly, research and development of energy storage devices have emerged as a critical area of focus. The electrode materials are critical in the electrochemical performance of energy storage devices, such as energy storage capacity and cycle life. Cellulose nanofiber (CNF) represents an important substrate with potentials in the applications of green electrode materials due to their environmental sustainability and excellent compatibility. By utilizing the layer-by layer (LbL) process, well-defined nanoscale multilayer structure is prepared on a variety of substrates. In recent years, increasing attention has focused on electrode materials produced from LbL process on CNFs to yield electrodes with exceptional properties, such as high specific surface area, outstanding electrical conductivity, superior electrochemical activity, and exceptional mechanical stability. This review provides a comprehensive overview on the development of functional CNF via the LbL approach as electrode materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI