Research on low-carbon technology diffusion among enterprises in networked evolutionary game

补贴 扩散 同种类的 背景(考古学) 碳排放税 经济 碳纤维 公共经济学 产业组织 业务 微观经济学 环境经济学 计算机科学 数学 生态学 温室气体 市场经济 古生物学 物理 算法 组合数学 生物 复合数 热力学
作者
Yu’e Wu,Xinyu Wang,Zeyun Liu,Xiukun Zhao
出处
期刊:Chaos Solitons & Fractals [Elsevier]
卷期号:174: 113852-113852 被引量:6
标识
DOI:10.1016/j.chaos.2023.113852
摘要

The diffusion of low-carbon technologies (LCTs) is one of the important measures to mitigate carbon emissions. Local governments, enterprises, and consumers are crucial participants in the complex adaptive LCT diffusion system. In this context, this study builds an evolutionary game model based on a complex network comprised of three sub-networks, which respectively represent the connections of local governments, enterprises and consumers. Using this model, this research explores the impacts of homogeneous subsidies, heterogeneous subsidies, homogeneous carbon taxes, heterogeneous carbon taxes, targeted penalties, market demand, and policy mixes combined with these instruments on LCT diffusion. The results show that carbon taxes, subsidies, and penalties can all promote the diffusion of LCTs. The comprehensive effect of LCT diffusion brought by heterogeneous subsidies or carbon taxes is slightly better than those achieved by the fixed subsidy or the carbon tax equal to their respective mean values. Compared with pure carbon tax and subsidy policies, the mixed policy of introducing targeted fines brings a more obvious LCT diffusion effect. However, none of these policy interventions can achieve the complete spread of LCTs. Meanwhile, increasing the potential market demand for low-carbon products can achieve a very significant diffusion of LCTs. And when the proportion of white consumers reaches 0.9, the full proliferation of LCTs can be realized. This research develops a valuable framework that enriches the modeling practice of the diffusion of LCTs and provides insights for implementing well-designed policy packages.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ambit完成签到,获得积分20
刚刚
张小完成签到,获得积分20
1秒前
3秒前
TingtingGZ发布了新的文献求助10
3秒前
3秒前
4秒前
claud完成签到 ,获得积分10
5秒前
勤恳元枫完成签到,获得积分10
5秒前
5秒前
6秒前
自由醉薇完成签到 ,获得积分10
7秒前
蔚蓝天空完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
小小的手心完成签到,获得积分10
8秒前
卷卷完成签到,获得积分10
9秒前
10秒前
10秒前
顺利毕业完成签到,获得积分10
10秒前
Ambit发布了新的文献求助30
11秒前
wkjfh应助科研通管家采纳,获得10
11秒前
orixero应助懒羊羊大王采纳,获得10
11秒前
一二应助科研通管家采纳,获得10
11秒前
11秒前
zhonglv7应助科研通管家采纳,获得10
11秒前
stella完成签到,获得积分20
11秒前
11秒前
11秒前
wkjfh应助科研通管家采纳,获得20
11秒前
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
小马甲应助科研通管家采纳,获得10
11秒前
霸气映之发布了新的文献求助10
11秒前
Live应助科研通管家采纳,获得10
11秒前
无极微光应助韦小宝采纳,获得20
11秒前
wkjfh应助科研通管家采纳,获得10
11秒前
12秒前
zhonglv7应助科研通管家采纳,获得10
12秒前
脑洞疼应助科研通管家采纳,获得10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666801
求助须知:如何正确求助?哪些是违规求助? 4883139
关于积分的说明 15118110
捐赠科研通 4825764
什么是DOI,文献DOI怎么找? 2583569
邀请新用户注册赠送积分活动 1537746
关于科研通互助平台的介绍 1495952