重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Mapping Forest Disturbance Types in China with Landsat Time Series

扰动(地质) 计算机科学 分割 遥感 登录中 森林动态 土地覆盖 数据挖掘 人工智能 地理 土地利用 林业 生态学 古生物学 生物
作者
Lianzhi Huo,Ping Tang
标识
DOI:10.1109/igarss52108.2023.10282248
摘要

Forest is an important natural resource for the Earth. However, forest is frequently disturbance by different agents, which has different cascading impacts on surface energy balances, carbon dynamics et al. To better understand forest disturbance process in China, in this study, an object-based time series trajectory analysis technology was used to classify forest change data into different forest disturbance types, including forest logging and forest fire. The specific process includes: first, a hierarchical sample collection scheme was designed, and the visual interpretation of the samples is completed by different interpretation experts with the assistance of multi-source data; secondly, image segmentation of forest change data was performed, and the forest disturbance pixels that occur in the same year and are spatially adjacent are classified as the same object and used as the basic unit of subsequent processing; thirdly, the Landsat time series features of each image segmentation object were extracted, and the features representing their time series trajectory changes were further extracted; finally, the classifier was trained and optimized to complete the automatic classification of the national area. Experimental results show that the spatial and temporal distributions for different disturbance types vary greatly in China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lcs完成签到,获得积分10
2秒前
可乐发布了新的文献求助10
2秒前
阿赵完成签到,获得积分10
2秒前
高速公鹿完成签到 ,获得积分10
3秒前
3秒前
清欢完成签到,获得积分10
3秒前
4秒前
wss发布了新的文献求助10
4秒前
4秒前
友好的千凡完成签到,获得积分10
4秒前
7秒前
风趣的瑛完成签到 ,获得积分10
7秒前
啦啦啦发布了新的文献求助10
8秒前
北过完成签到,获得积分10
8秒前
积极的玉米完成签到,获得积分20
8秒前
8秒前
8秒前
852应助挡住所有坏运气888采纳,获得10
9秒前
10秒前
11秒前
11秒前
YJ888完成签到,获得积分10
11秒前
越越关注了科研通微信公众号
11秒前
11秒前
英姑应助知性的雪糕采纳,获得10
12秒前
13秒前
李飘飘发布了新的文献求助10
13秒前
14秒前
hang发布了新的文献求助10
14秒前
sq0507发布了新的文献求助10
14秒前
14秒前
16秒前
16秒前
杨利英发布了新的文献求助10
17秒前
YUN完成签到,获得积分10
17秒前
等待的寒松关注了科研通微信公众号
18秒前
18秒前
tian发布了新的文献求助10
19秒前
etrh完成签到 ,获得积分10
20秒前
斯文败类应助方可采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468225
求助须知:如何正确求助?哪些是违规求助? 4571705
关于积分的说明 14331270
捐赠科研通 4498225
什么是DOI,文献DOI怎么找? 2464411
邀请新用户注册赠送积分活动 1453131
关于科研通互助平台的介绍 1427777