Mapping Forest Disturbance Types in China with Landsat Time Series

扰动(地质) 计算机科学 分割 遥感 登录中 森林动态 土地覆盖 数据挖掘 人工智能 地理 土地利用 林业 生态学 古生物学 生物
作者
Lianzhi Huo,Ping Tang
标识
DOI:10.1109/igarss52108.2023.10282248
摘要

Forest is an important natural resource for the Earth. However, forest is frequently disturbance by different agents, which has different cascading impacts on surface energy balances, carbon dynamics et al. To better understand forest disturbance process in China, in this study, an object-based time series trajectory analysis technology was used to classify forest change data into different forest disturbance types, including forest logging and forest fire. The specific process includes: first, a hierarchical sample collection scheme was designed, and the visual interpretation of the samples is completed by different interpretation experts with the assistance of multi-source data; secondly, image segmentation of forest change data was performed, and the forest disturbance pixels that occur in the same year and are spatially adjacent are classified as the same object and used as the basic unit of subsequent processing; thirdly, the Landsat time series features of each image segmentation object were extracted, and the features representing their time series trajectory changes were further extracted; finally, the classifier was trained and optimized to complete the automatic classification of the national area. Experimental results show that the spatial and temporal distributions for different disturbance types vary greatly in China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
赤橙完成签到,获得积分10
3秒前
3秒前
4秒前
老汤姆完成签到,获得积分10
5秒前
DL发布了新的文献求助10
5秒前
尊敬枕头完成签到 ,获得积分10
9秒前
mncvjs发布了新的文献求助10
9秒前
Hello应助幻梦如歌采纳,获得10
9秒前
哭泣雅绿发布了新的文献求助10
12秒前
13秒前
cc完成签到,获得积分10
15秒前
caster1完成签到 ,获得积分10
15秒前
15秒前
16秒前
华仔应助哭泣雅绿采纳,获得10
17秒前
善良的英姑完成签到 ,获得积分10
17秒前
mncvjs完成签到,获得积分20
17秒前
Hello应助粥粥粥粥粥采纳,获得10
17秒前
标致溪流发布了新的文献求助10
17秒前
zanilia发布了新的文献求助10
17秒前
超级谷冬完成签到,获得积分10
17秒前
Ganlou应助加菲丰丰采纳,获得10
19秒前
19秒前
笑点低绿竹关注了科研通微信公众号
20秒前
夏惋清完成签到 ,获得积分0
20秒前
852应助失眠傲白采纳,获得10
20秒前
充电宝应助霸气向秋采纳,获得10
21秒前
幻梦如歌发布了新的文献求助10
21秒前
青青草原没有派对完成签到,获得积分10
22秒前
22秒前
22秒前
22秒前
itachi完成签到,获得积分10
23秒前
阳光青烟完成签到,获得积分10
24秒前
24秒前
25秒前
itachi发布了新的文献求助10
26秒前
张狗蛋完成签到,获得积分20
27秒前
27秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313894
求助须知:如何正确求助?哪些是违规求助? 2946248
关于积分的说明 8529066
捐赠科研通 2621808
什么是DOI,文献DOI怎么找? 1434115
科研通“疑难数据库(出版商)”最低求助积分说明 665131
邀请新用户注册赠送积分活动 650738