A comparative study of statistical and machine learning models on carbon dioxide emissions prediction of China

均方误差 平均绝对百分比误差 自回归积分移动平均 单变量 统计 人工神经网络 随机森林 平均绝对误差 自回归模型 时间序列 数学 计算机科学 人工智能 多元统计
作者
Xiangqian Li,Xiaoxiao Zhang
出处
期刊:Environmental Science and Pollution Research [Springer Nature]
卷期号:30 (55): 117485-117502 被引量:7
标识
DOI:10.1007/s11356-023-30428-5
摘要

The escalating levels of carbon dioxide (CO2) emissions represent the primary driver of global warming, and addressing them is of paramount importance. Timely and accurate prediction, as well as effective control of CO2 emissions, are pivotal for guiding mitigation measures. This paper aims to select the best prediction model for near-real-time daily CO2 emissions in China. The prediction models are based on univariate daily time-series data spanning January 1st, 2020, to September 30st, 2022. Six models are proposed, including three statistical models: grey prediction (GM(1,1)), autoregressive integrated moving average (ARIMA), and seasonal autoregressive integrated moving average with exogenous factors (SARIMAX), and three machine learning models: artificial neural network (ANN), random forest (RF), and long short-term memory (LSTM). The performance of these six models is evaluated using five criteria: mean squared error (MSE), root-mean squared error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and coefficient of determination (R2). Our findings reveal that the three machine learning models consistently outperform the three statistical models across all five criteria. Among them, the LSTM model demonstrates exceptional performance for daily CO2 emission prediction, boasting an impressively low MSE value of 3.5179e-04, an RMSE value of 0.0187, an MAE value of 0.0140, an MAPE value of 14.8291%, and a high R2 value of 0.9844. This underscores the robustness of the LSTM model in capturing and predicting complex emission patterns, positioning it as the most suitable option for near-real-time daily CO2 emission prediction based on the provided daily time series data. Moreover, our study's results provide valuable insights into emissions forecasting, enabling data-driven decision-making for policymakers and stakeholders. The accurate and timely predictions offered by the LSTM model can aid in the formulation of effective strategies to mitigate carbon emissions, contributing to a more sustainable future. Furthermore, the findings of this study can enhance our understanding of the dynamics of CO2 emissions, leading to more informed environmental policies and actions aimed at reducing carbon emissions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俊秀的汉堡完成签到,获得积分10
1秒前
赘婿应助kenna123采纳,获得10
2秒前
FashionBoy应助laohu2采纳,获得30
2秒前
iui飞完成签到,获得积分20
3秒前
洗剪吹发布了新的文献求助10
3秒前
4秒前
DJ想吃饭了完成签到,获得积分10
4秒前
4秒前
唠叨的听寒完成签到,获得积分10
5秒前
韶光与猫完成签到,获得积分10
6秒前
shufessm完成签到,获得积分0
6秒前
Aurora完成签到 ,获得积分10
7秒前
Owen应助iui飞采纳,获得10
8秒前
9秒前
洗剪吹完成签到,获得积分10
10秒前
小二郎应助个性的饼干采纳,获得10
11秒前
07发布了新的文献求助10
11秒前
11秒前
冷酷的墨镜完成签到,获得积分10
13秒前
孟威发布了新的文献求助20
13秒前
15秒前
smile发布了新的文献求助10
15秒前
nil驳回了Hello应助
16秒前
sissiarno应助huazhangchina采纳,获得30
16秒前
小晋完成签到,获得积分10
16秒前
corner发布了新的文献求助10
17秒前
Jasper应助程迦采纳,获得10
17秒前
18秒前
科研通AI2S应助Blummer采纳,获得10
19秒前
呼呼夫人完成签到 ,获得积分10
19秒前
Harry完成签到,获得积分10
20秒前
20秒前
雪白的夜香完成签到,获得积分10
21秒前
fxfcpu完成签到,获得积分10
21秒前
22秒前
CipherSage应助科研通管家采纳,获得10
24秒前
顾矜应助科研通管家采纳,获得10
24秒前
无花果应助科研通管家采纳,获得10
24秒前
24秒前
领导范儿应助科研通管家采纳,获得10
24秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164075
求助须知:如何正确求助?哪些是违规求助? 2814831
关于积分的说明 7906671
捐赠科研通 2474391
什么是DOI,文献DOI怎么找? 1317493
科研通“疑难数据库(出版商)”最低求助积分说明 631797
版权声明 602198