A comparative study of statistical and machine learning models on carbon dioxide emissions prediction of China

均方误差 平均绝对百分比误差 自回归积分移动平均 单变量 统计 人工神经网络 随机森林 平均绝对误差 自回归模型 时间序列 数学 计算机科学 人工智能 多元统计
作者
Xiangqian Li,Xiaoxiao Zhang
出处
期刊:Environmental Science and Pollution Research [Springer Science+Business Media]
卷期号:30 (55): 117485-117502 被引量:7
标识
DOI:10.1007/s11356-023-30428-5
摘要

The escalating levels of carbon dioxide (CO2) emissions represent the primary driver of global warming, and addressing them is of paramount importance. Timely and accurate prediction, as well as effective control of CO2 emissions, are pivotal for guiding mitigation measures. This paper aims to select the best prediction model for near-real-time daily CO2 emissions in China. The prediction models are based on univariate daily time-series data spanning January 1st, 2020, to September 30st, 2022. Six models are proposed, including three statistical models: grey prediction (GM(1,1)), autoregressive integrated moving average (ARIMA), and seasonal autoregressive integrated moving average with exogenous factors (SARIMAX), and three machine learning models: artificial neural network (ANN), random forest (RF), and long short-term memory (LSTM). The performance of these six models is evaluated using five criteria: mean squared error (MSE), root-mean squared error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and coefficient of determination (R2). Our findings reveal that the three machine learning models consistently outperform the three statistical models across all five criteria. Among them, the LSTM model demonstrates exceptional performance for daily CO2 emission prediction, boasting an impressively low MSE value of 3.5179e-04, an RMSE value of 0.0187, an MAE value of 0.0140, an MAPE value of 14.8291%, and a high R2 value of 0.9844. This underscores the robustness of the LSTM model in capturing and predicting complex emission patterns, positioning it as the most suitable option for near-real-time daily CO2 emission prediction based on the provided daily time series data. Moreover, our study's results provide valuable insights into emissions forecasting, enabling data-driven decision-making for policymakers and stakeholders. The accurate and timely predictions offered by the LSTM model can aid in the formulation of effective strategies to mitigate carbon emissions, contributing to a more sustainable future. Furthermore, the findings of this study can enhance our understanding of the dynamics of CO2 emissions, leading to more informed environmental policies and actions aimed at reducing carbon emissions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张包子发布了新的文献求助10
1秒前
1秒前
LIUYC完成签到,获得积分10
2秒前
科研通AI2S应助睡不醒的xx采纳,获得10
5秒前
落红禹03发布了新的文献求助10
5秒前
Joanna完成签到,获得积分10
5秒前
天边完成签到,获得积分10
6秒前
复杂函完成签到,获得积分10
6秒前
gnr2000发布了新的文献求助10
7秒前
将个烂就发布了新的文献求助10
7秒前
8秒前
Theprisoners举报啊薇儿求助涉嫌违规
8秒前
8秒前
9秒前
10秒前
11秒前
天天快乐应助薄荷巧克力采纳,获得10
12秒前
apollo2002发布了新的文献求助10
13秒前
狂野觅云发布了新的文献求助10
13秒前
14秒前
小狐狸完成签到,获得积分10
14秒前
睡不醒的xx完成签到,获得积分10
15秒前
15秒前
15秒前
啾咪完成签到,获得积分10
16秒前
张雷应助想毕业的gy采纳,获得20
17秒前
17秒前
摔跤的猫发布了新的文献求助10
18秒前
英俊的铭应助dwh采纳,获得10
18秒前
123发布了新的文献求助10
18秒前
19秒前
影子发布了新的文献求助10
19秒前
Bai0703_完成签到,获得积分10
19秒前
20秒前
力量发布了新的文献求助10
21秒前
gnr2000完成签到,获得积分10
21秒前
22秒前
Fancy完成签到 ,获得积分20
22秒前
小yang发布了新的文献求助10
23秒前
Mryuan完成签到,获得积分10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992518
求助须知:如何正确求助?哪些是违规求助? 3533486
关于积分的说明 11262567
捐赠科研通 3273054
什么是DOI,文献DOI怎么找? 1805922
邀请新用户注册赠送积分活动 882858
科研通“疑难数据库(出版商)”最低求助积分说明 809496