亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MTKDN: Multi-Task Knowledge Disentanglement Network for Recommendation

计算机科学 任务(项目管理) 人工智能 多任务学习 机器学习 可扩展性 管理 数据库 经济
作者
Haotian Wu,Bowen Xing,Ivor W. Tsang
标识
DOI:10.1145/3583780.3615271
摘要

Multi-task learning (MTL) is a widely adopted machine learning paradigm in recommender systems. However, existing MTL models often suffer from performance degeneration with negative transfer and seesaw phenomena. Some works attempt to alleviate the negative transfer and seesaw issues by separating task-specific and shared experts to mitigate the harmful interference between task-specific and shared knowledge. Despite the success of these efforts, task-specific and shared knowledge have still not been thoroughly decoupled. There may still exist unnecessary mixture between the shared and task-specific knowledge, which may harm MLT models' performances. To tackle this problem, in this paper, we propose multi-task knowledge disentanglement network (MTKDN) to further reduce harmful interference between the shared and task-specific knowledge. Specifically, we propose a novel contrastive disentanglement mechanism to explicitly decouple the shared and task-specific knowledge in corresponding hidden spaces. In this way, the unnecessary mixture between shared and task-specific knowledge can be reduced. As for optimization objectives, we propose individual optimization objectives for shared and task-specific experts, by which we can encourage these two kinds of experts to focus more on extracting the shared and task-specific knowledge, respectively. Additionally, we propose a margin regularization to ensure that the fusion of shared and task-specific knowledge can outperform exploiting either of them alone. We conduct extensive experiments on open-source large-scale recommendation datasets. The experimental results demonstrate that MTKDN significantly outperforms state-of-the-art MTL models. In addition, the ablation experiments further verify the necessity of our proposed contrastive disentanglement mechanism and the novel loss settings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
trophozoite完成签到 ,获得积分10
3秒前
6秒前
橘子发布了新的文献求助10
14秒前
qiuqiu完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助10
16秒前
22秒前
SCIfafafafa发布了新的文献求助10
27秒前
hua完成签到,获得积分10
29秒前
于是乎完成签到 ,获得积分10
32秒前
bkagyin应助大力的图图采纳,获得10
33秒前
所所应助SCIfafafafa采纳,获得10
38秒前
LZR发布了新的文献求助10
45秒前
科目三应助迅速初柳采纳,获得10
47秒前
个木完成签到,获得积分10
49秒前
49秒前
yanglinhai完成签到 ,获得积分10
50秒前
慕青应助可靠的寒风采纳,获得10
52秒前
luckydog发布了新的文献求助10
54秒前
1分钟前
eclo完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
周墨完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
qiuqiu发布了新的文献求助10
1分钟前
ljx完成签到 ,获得积分10
1分钟前
追寻夜香完成签到 ,获得积分10
1分钟前
1分钟前
輕瘋发布了新的文献求助10
1分钟前
平安完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
快乐若云应助科研通管家采纳,获得10
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
852应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746419
求助须知:如何正确求助?哪些是违规求助? 5434098
关于积分的说明 15355366
捐赠科研通 4886387
什么是DOI,文献DOI怎么找? 2627215
邀请新用户注册赠送积分活动 1575696
关于科研通互助平台的介绍 1532425