MTKDN: Multi-Task Knowledge Disentanglement Network for Recommendation

计算机科学 任务(项目管理) 人工智能 多任务学习 机器学习 可扩展性 管理 数据库 经济
作者
Haotian Wu,Bowen Xing,Ivor W. Tsang
标识
DOI:10.1145/3583780.3615271
摘要

Multi-task learning (MTL) is a widely adopted machine learning paradigm in recommender systems. However, existing MTL models often suffer from performance degeneration with negative transfer and seesaw phenomena. Some works attempt to alleviate the negative transfer and seesaw issues by separating task-specific and shared experts to mitigate the harmful interference between task-specific and shared knowledge. Despite the success of these efforts, task-specific and shared knowledge have still not been thoroughly decoupled. There may still exist unnecessary mixture between the shared and task-specific knowledge, which may harm MLT models' performances. To tackle this problem, in this paper, we propose multi-task knowledge disentanglement network (MTKDN) to further reduce harmful interference between the shared and task-specific knowledge. Specifically, we propose a novel contrastive disentanglement mechanism to explicitly decouple the shared and task-specific knowledge in corresponding hidden spaces. In this way, the unnecessary mixture between shared and task-specific knowledge can be reduced. As for optimization objectives, we propose individual optimization objectives for shared and task-specific experts, by which we can encourage these two kinds of experts to focus more on extracting the shared and task-specific knowledge, respectively. Additionally, we propose a margin regularization to ensure that the fusion of shared and task-specific knowledge can outperform exploiting either of them alone. We conduct extensive experiments on open-source large-scale recommendation datasets. The experimental results demonstrate that MTKDN significantly outperforms state-of-the-art MTL models. In addition, the ablation experiments further verify the necessity of our proposed contrastive disentanglement mechanism and the novel loss settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
山城的酒完成签到 ,获得积分10
1秒前
1秒前
打工人发布了新的文献求助10
1秒前
1秒前
我要赶快毕业完成签到,获得积分10
1秒前
onedollar发布了新的文献求助10
2秒前
甜甜映菡完成签到,获得积分10
2秒前
Jia完成签到,获得积分10
2秒前
dollarpuff完成签到,获得积分10
3秒前
Migue应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
白色风车发布了新的文献求助10
3秒前
4秒前
王sir完成签到 ,获得积分10
4秒前
开心完成签到,获得积分20
4秒前
4秒前
4秒前
停云完成签到 ,获得积分10
4秒前
天真的香寒完成签到 ,获得积分10
5秒前
5秒前
殷昭慧完成签到,获得积分10
5秒前
聪明煎蛋发布了新的文献求助10
5秒前
李爱国应助陆千万采纳,获得10
5秒前
踏实的幻珊完成签到 ,获得积分10
8秒前
8秒前
停云关注了科研通微信公众号
9秒前
lsw完成签到 ,获得积分10
9秒前
zhc发布了新的文献求助10
9秒前
10秒前
美伢发布了新的文献求助10
10秒前
9778发布了新的文献求助10
11秒前
科研通AI2S应助真实的储采纳,获得10
11秒前
Lkal完成签到 ,获得积分10
11秒前
11秒前
啊娴仔发布了新的文献求助10
12秒前
开心发布了新的文献求助10
12秒前
zhaomr完成签到,获得积分10
13秒前
高分求助中
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3122329
求助须知:如何正确求助?哪些是违规求助? 2772690
关于积分的说明 7714624
捐赠科研通 2428211
什么是DOI,文献DOI怎么找? 1289656
科研通“疑难数据库(出版商)”最低求助积分说明 621484
版权声明 600183