亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MTKDN: Multi-Task Knowledge Disentanglement Network for Recommendation

计算机科学 任务(项目管理) 人工智能 多任务学习 机器学习 可扩展性 管理 数据库 经济
作者
Haotian Wu,Bowen Xing,Ivor W. Tsang
标识
DOI:10.1145/3583780.3615271
摘要

Multi-task learning (MTL) is a widely adopted machine learning paradigm in recommender systems. However, existing MTL models often suffer from performance degeneration with negative transfer and seesaw phenomena. Some works attempt to alleviate the negative transfer and seesaw issues by separating task-specific and shared experts to mitigate the harmful interference between task-specific and shared knowledge. Despite the success of these efforts, task-specific and shared knowledge have still not been thoroughly decoupled. There may still exist unnecessary mixture between the shared and task-specific knowledge, which may harm MLT models' performances. To tackle this problem, in this paper, we propose multi-task knowledge disentanglement network (MTKDN) to further reduce harmful interference between the shared and task-specific knowledge. Specifically, we propose a novel contrastive disentanglement mechanism to explicitly decouple the shared and task-specific knowledge in corresponding hidden spaces. In this way, the unnecessary mixture between shared and task-specific knowledge can be reduced. As for optimization objectives, we propose individual optimization objectives for shared and task-specific experts, by which we can encourage these two kinds of experts to focus more on extracting the shared and task-specific knowledge, respectively. Additionally, we propose a margin regularization to ensure that the fusion of shared and task-specific knowledge can outperform exploiting either of them alone. We conduct extensive experiments on open-source large-scale recommendation datasets. The experimental results demonstrate that MTKDN significantly outperforms state-of-the-art MTL models. In addition, the ablation experiments further verify the necessity of our proposed contrastive disentanglement mechanism and the novel loss settings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
纸鹤发布了新的文献求助10
3秒前
liz完成签到,获得积分10
13秒前
小花小宝和阿飞完成签到 ,获得积分10
21秒前
24秒前
科研通AI6应助盛夏如花采纳,获得10
25秒前
31秒前
36秒前
50秒前
55155255完成签到,获得积分10
51秒前
慕青应助明亮紫易采纳,获得10
53秒前
纸鹤发布了新的文献求助10
53秒前
吱吱吱吱发布了新的文献求助10
54秒前
小橘子不小完成签到,获得积分10
57秒前
Ruby完成签到,获得积分10
57秒前
1分钟前
zhuyi_6695发布了新的文献求助10
1分钟前
kei完成签到 ,获得积分10
1分钟前
吃了吃了完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
勤恳依霜发布了新的文献求助10
1分钟前
hhhhhh应助科研通管家采纳,获得50
1分钟前
xiaohardy完成签到,获得积分10
1分钟前
勤恳依霜完成签到,获得积分10
1分钟前
英俊的铭应助Jack采纳,获得10
1分钟前
盛夏如花发布了新的文献求助10
1分钟前
budingman发布了新的文献求助10
1分钟前
Chen完成签到 ,获得积分10
1分钟前
健壮傲之完成签到 ,获得积分10
1分钟前
纸鹤发布了新的文献求助80
1分钟前
2分钟前
sunrise完成签到,获得积分10
2分钟前
汉堡包应助科研帽采纳,获得10
2分钟前
孙颖完成签到 ,获得积分10
2分钟前
Jack发布了新的文献求助10
2分钟前
2分钟前
Always发布了新的文献求助10
2分钟前
Steve完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
Steve关注了科研通微信公众号
2分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644525
求助须知:如何正确求助?哪些是违规求助? 4764376
关于积分的说明 15025234
捐赠科研通 4802924
什么是DOI,文献DOI怎么找? 2567703
邀请新用户注册赠送积分活动 1525363
关于科研通互助平台的介绍 1484826