MTKDN: Multi-Task Knowledge Disentanglement Network for Recommendation

计算机科学 任务(项目管理) 人工智能 多任务学习 机器学习 可扩展性 数据库 经济 管理
作者
Haotian Wu,Bowen Xing,Ivor W. Tsang
标识
DOI:10.1145/3583780.3615271
摘要

Multi-task learning (MTL) is a widely adopted machine learning paradigm in recommender systems. However, existing MTL models often suffer from performance degeneration with negative transfer and seesaw phenomena. Some works attempt to alleviate the negative transfer and seesaw issues by separating task-specific and shared experts to mitigate the harmful interference between task-specific and shared knowledge. Despite the success of these efforts, task-specific and shared knowledge have still not been thoroughly decoupled. There may still exist unnecessary mixture between the shared and task-specific knowledge, which may harm MLT models' performances. To tackle this problem, in this paper, we propose multi-task knowledge disentanglement network (MTKDN) to further reduce harmful interference between the shared and task-specific knowledge. Specifically, we propose a novel contrastive disentanglement mechanism to explicitly decouple the shared and task-specific knowledge in corresponding hidden spaces. In this way, the unnecessary mixture between shared and task-specific knowledge can be reduced. As for optimization objectives, we propose individual optimization objectives for shared and task-specific experts, by which we can encourage these two kinds of experts to focus more on extracting the shared and task-specific knowledge, respectively. Additionally, we propose a margin regularization to ensure that the fusion of shared and task-specific knowledge can outperform exploiting either of them alone. We conduct extensive experiments on open-source large-scale recommendation datasets. The experimental results demonstrate that MTKDN significantly outperforms state-of-the-art MTL models. In addition, the ablation experiments further verify the necessity of our proposed contrastive disentanglement mechanism and the novel loss settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pearsir发布了新的文献求助10
1秒前
一颗苹果完成签到,获得积分10
2秒前
映城应助瓜地学龙叫采纳,获得30
2秒前
3秒前
毕春宇发布了新的文献求助10
7秒前
一丁雨完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
12秒前
乐乐发布了新的文献求助10
12秒前
Vivianne发布了新的文献求助10
16秒前
大胆班完成签到,获得积分10
18秒前
乐乐完成签到,获得积分20
19秒前
19秒前
20秒前
Qing完成签到,获得积分10
20秒前
20秒前
Cupid完成签到,获得积分10
22秒前
23秒前
哈哈哈发布了新的文献求助30
23秒前
24秒前
张成协发布了新的文献求助10
25秒前
MMX完成签到,获得积分10
25秒前
zym999999发布了新的文献求助10
26秒前
云岫完成签到 ,获得积分10
26秒前
清秀的靖雁应助清玖采纳,获得10
26秒前
27秒前
28秒前
zhang完成签到,获得积分10
28秒前
32秒前
嵩嵩发布了新的文献求助10
33秒前
mmmmm完成签到,获得积分10
34秒前
诸道罡发布了新的文献求助10
35秒前
cxm666发布了新的文献求助10
35秒前
熊i发布了新的文献求助10
37秒前
NexusExplorer应助张成协采纳,获得10
37秒前
深情安青应助科研通管家采纳,获得10
37秒前
华仔应助科研通管家采纳,获得10
38秒前
38秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958051
求助须知:如何正确求助?哪些是违规求助? 3504213
关于积分的说明 11117431
捐赠科研通 3235582
什么是DOI,文献DOI怎么找? 1788318
邀请新用户注册赠送积分活动 871204
科研通“疑难数据库(出版商)”最低求助积分说明 802511