已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MTKDN: Multi-Task Knowledge Disentanglement Network for Recommendation

计算机科学 任务(项目管理) 人工智能 多任务学习 机器学习 可扩展性 管理 数据库 经济
作者
Haotian Wu,Bowen Xing,Ivor W. Tsang
标识
DOI:10.1145/3583780.3615271
摘要

Multi-task learning (MTL) is a widely adopted machine learning paradigm in recommender systems. However, existing MTL models often suffer from performance degeneration with negative transfer and seesaw phenomena. Some works attempt to alleviate the negative transfer and seesaw issues by separating task-specific and shared experts to mitigate the harmful interference between task-specific and shared knowledge. Despite the success of these efforts, task-specific and shared knowledge have still not been thoroughly decoupled. There may still exist unnecessary mixture between the shared and task-specific knowledge, which may harm MLT models' performances. To tackle this problem, in this paper, we propose multi-task knowledge disentanglement network (MTKDN) to further reduce harmful interference between the shared and task-specific knowledge. Specifically, we propose a novel contrastive disentanglement mechanism to explicitly decouple the shared and task-specific knowledge in corresponding hidden spaces. In this way, the unnecessary mixture between shared and task-specific knowledge can be reduced. As for optimization objectives, we propose individual optimization objectives for shared and task-specific experts, by which we can encourage these two kinds of experts to focus more on extracting the shared and task-specific knowledge, respectively. Additionally, we propose a margin regularization to ensure that the fusion of shared and task-specific knowledge can outperform exploiting either of them alone. We conduct extensive experiments on open-source large-scale recommendation datasets. The experimental results demonstrate that MTKDN significantly outperforms state-of-the-art MTL models. In addition, the ablation experiments further verify the necessity of our proposed contrastive disentanglement mechanism and the novel loss settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
刚刚
临河盗龙发布了新的文献求助10
1秒前
xxi关闭了xxi文献求助
1秒前
2秒前
4秒前
英吉利25发布了新的文献求助10
7秒前
7秒前
老温完成签到,获得积分10
9秒前
李昭进完成签到,获得积分10
10秒前
WEIAIAIAI关注了科研通微信公众号
12秒前
浮游应助小曾采纳,获得10
13秒前
科研通AI2S应助小曾采纳,获得10
13秒前
seele发布了新的文献求助10
13秒前
磷酸瞳完成签到 ,获得积分10
14秒前
14秒前
14秒前
学习发布了新的文献求助20
14秒前
bkagyin应助小米采纳,获得10
16秒前
bkagyin应助小吴同志采纳,获得10
18秒前
李健的粉丝团团长应助000采纳,获得10
21秒前
雪白语海完成签到,获得积分10
21秒前
SciGPT应助lvzhihao采纳,获得10
25秒前
科研通AI2S应助淡定亦云采纳,获得10
25秒前
25秒前
27秒前
柠木完成签到 ,获得积分10
28秒前
29秒前
msn00发布了新的文献求助10
32秒前
32秒前
33秒前
成就以冬关注了科研通微信公众号
33秒前
000发布了新的文献求助10
35秒前
听宇发布了新的文献求助10
36秒前
学术小白发布了新的文献求助10
36秒前
lvzhihao发布了新的文献求助10
37秒前
HHHHH完成签到,获得积分10
37秒前
joy发布了新的文献求助10
41秒前
42秒前
陌上完成签到,获得积分10
43秒前
Hello应助牛马学生采纳,获得10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493139
求助须知:如何正确求助?哪些是违规求助? 4591135
关于积分的说明 14433416
捐赠科研通 4523765
什么是DOI,文献DOI怎么找? 2478466
邀请新用户注册赠送积分活动 1463482
关于科研通互助平台的介绍 1436175