Regional-scale cotton yield forecast via data-driven spatio-temporal prediction (STP) of solar-induced chlorophyll fluorescence (SIF)

卷积神经网络 比例(比率) 产量(工程) 计算机科学 人工神经网络 环境科学 深度学习 植被(病理学) 遥感 谱线 作物 人工智能 模式识别(心理学) 地质学 地图学 物理 地理 医学 病理 天文 林业 热力学
作者
Xiaoyan Kang,Changping Huang,Lifu Zhang,Huihan Wang,Ze Zhang,Xin Lv
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:299: 113861-113861 被引量:3
标识
DOI:10.1016/j.rse.2023.113861
摘要

Solar-induced chlorophyll fluorescence (SIF), as a direct probe of vegetation photosynthesis, has recently been an effective indicator for crop yield estimation in late-season. Spatio-temporal prediction of SIF (STP-SIF) from mid- to late-season could be a promising solution to forecast crop yields in mid-season. However, STP-SIF has not been well explored in assessing its applicability in crop yield forecasting. In the study, we first explored the potential driving mechanism and designed time-series data-driven deep learning approaches for the STP-SIF issue. We compared the feasibility of four styles of explanatory variables, six network structures, and the corresponding eight approaches in SIF prediction in the main cotton-planting area in Northern Xinjiang, taking the two tasks of one and two months before harvest as examples. The STP-SIF products of the five approaches, namely Spe_CNN-LSTM (a hybrid network combining convolutional neural network and long short-term memory considering spectra), Spe_CNN3D (a three-dimensional CNN considering spectra), SpaSpeSIF_CNN3D (a three-dimensional CNN considering spectra and SIF), SpaSpeSIF_HCNN (a hybrid network combining CNN2D and CNN3D considering spectra and SIF), and SIF_CNN-LSTM (a CNN-LSTM network considering SIF), showed a similar spatial pattern to the referenced SIF, indicating that these proposed approaches could be better for STP-SIF. Discussion of the spatial scale effect of the STP-SIF issue preliminary showed that our proposed methods had little spatial scale dependence and hence could be suitable for STP-SIF in different spatial extents at diverse resolutions. Further, we performed the experiments for the regional-scale cotton yield forecast one to two months before harvest based on the STP-SIF products of August and September. The best cotton yield prediction accuracies, with R2 of 0.70 and 0.66 for one and two months before harvest, were obtained respectively by the combination of the known SIF and NDWI (Normalized Difference Water Index) and the predicted SIF by SIF_CNN-LSTM. This study offers a baseline for the STP-SIF issue and reveals the feasibility of the STP-SIF products for accurate crop yield forecast.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mariawang发布了新的文献求助10
1秒前
1秒前
2秒前
太叔夜南完成签到,获得积分10
2秒前
ccc完成签到,获得积分10
2秒前
王丹宁发布了新的文献求助10
2秒前
慕青应助splatoon采纳,获得10
2秒前
DueDue0327完成签到,获得积分10
2秒前
3秒前
木瓜完成签到,获得积分10
3秒前
yiersan发布了新的文献求助10
4秒前
柳随风完成签到,获得积分10
4秒前
良月二十三完成签到,获得积分10
4秒前
冰勾板勾发布了新的文献求助10
4秒前
chenxx发布了新的文献求助10
5秒前
留胡子的白枫完成签到,获得积分10
5秒前
5秒前
汉堡包应助王丹宁采纳,获得10
7秒前
欣慰白山应助DueDue0327采纳,获得10
7秒前
陈丰滢完成签到,获得积分10
8秒前
李健的小迷弟应助至幸采纳,获得10
8秒前
CodeCraft应助良月二十三采纳,获得10
8秒前
Silvia关注了科研通微信公众号
8秒前
叁月二发布了新的文献求助10
9秒前
9秒前
aron发布了新的文献求助10
9秒前
洪星发布了新的文献求助10
9秒前
9秒前
善学以致用应助林小乌龟采纳,获得10
9秒前
中中中完成签到,获得积分10
9秒前
10秒前
Ran完成签到,获得积分20
10秒前
小兰花完成签到,获得积分10
10秒前
彭于晏应助chenxx采纳,获得10
10秒前
10秒前
11秒前
11秒前
11秒前
Nikko完成签到,获得积分10
12秒前
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009325
求助须知:如何正确求助?哪些是违规求助? 3549162
关于积分的说明 11301105
捐赠科研通 3283572
什么是DOI,文献DOI怎么找? 1810370
邀请新用户注册赠送积分活动 886205
科研通“疑难数据库(出版商)”最低求助积分说明 811301