Regional-scale cotton yield forecast via data-driven spatio-temporal prediction (STP) of solar-induced chlorophyll fluorescence (SIF)

卷积神经网络 比例(比率) 产量(工程) 计算机科学 人工神经网络 环境科学 深度学习 植被(病理学) 遥感 谱线 作物 人工智能 模式识别(心理学) 地质学 地图学 物理 地理 医学 病理 天文 林业 热力学
作者
Xiaoyan Kang,Changping Huang,Lifu Zhang,Huihan Wang,Ze Zhang,Xin Lv
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:299: 113861-113861 被引量:3
标识
DOI:10.1016/j.rse.2023.113861
摘要

Solar-induced chlorophyll fluorescence (SIF), as a direct probe of vegetation photosynthesis, has recently been an effective indicator for crop yield estimation in late-season. Spatio-temporal prediction of SIF (STP-SIF) from mid- to late-season could be a promising solution to forecast crop yields in mid-season. However, STP-SIF has not been well explored in assessing its applicability in crop yield forecasting. In the study, we first explored the potential driving mechanism and designed time-series data-driven deep learning approaches for the STP-SIF issue. We compared the feasibility of four styles of explanatory variables, six network structures, and the corresponding eight approaches in SIF prediction in the main cotton-planting area in Northern Xinjiang, taking the two tasks of one and two months before harvest as examples. The STP-SIF products of the five approaches, namely Spe_CNN-LSTM (a hybrid network combining convolutional neural network and long short-term memory considering spectra), Spe_CNN3D (a three-dimensional CNN considering spectra), SpaSpeSIF_CNN3D (a three-dimensional CNN considering spectra and SIF), SpaSpeSIF_HCNN (a hybrid network combining CNN2D and CNN3D considering spectra and SIF), and SIF_CNN-LSTM (a CNN-LSTM network considering SIF), showed a similar spatial pattern to the referenced SIF, indicating that these proposed approaches could be better for STP-SIF. Discussion of the spatial scale effect of the STP-SIF issue preliminary showed that our proposed methods had little spatial scale dependence and hence could be suitable for STP-SIF in different spatial extents at diverse resolutions. Further, we performed the experiments for the regional-scale cotton yield forecast one to two months before harvest based on the STP-SIF products of August and September. The best cotton yield prediction accuracies, with R2 of 0.70 and 0.66 for one and two months before harvest, were obtained respectively by the combination of the known SIF and NDWI (Normalized Difference Water Index) and the predicted SIF by SIF_CNN-LSTM. This study offers a baseline for the STP-SIF issue and reveals the feasibility of the STP-SIF products for accurate crop yield forecast.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MoNeng发布了新的文献求助10
1秒前
2秒前
月半完成签到,获得积分10
2秒前
3秒前
VDC应助karstbing采纳,获得30
3秒前
浮游应助草中有粑粑采纳,获得10
3秒前
Orange应助冰激凌采纳,获得10
4秒前
小康完成签到,获得积分10
4秒前
5秒前
沉静弘文完成签到 ,获得积分10
5秒前
充电宝应助王也采纳,获得10
6秒前
linclee完成签到,获得积分10
7秒前
7秒前
佳期发布了新的文献求助10
7秒前
兜兜完成签到 ,获得积分10
8秒前
目m完成签到,获得积分10
8秒前
李斯濛完成签到,获得积分10
9秒前
pangkuan发布了新的文献求助10
12秒前
17秒前
19秒前
英俊的铭应助shuqi采纳,获得10
20秒前
22秒前
搞怪人雄完成签到,获得积分10
22秒前
ceeray23应助坦率的草丛采纳,获得10
23秒前
24秒前
25秒前
orixero应助理理采纳,获得10
26秒前
26秒前
沉默是金发布了新的文献求助10
27秒前
27秒前
27秒前
蒲云海发布了新的文献求助10
28秒前
科研通AI6应助熙辞辞采纳,获得10
29秒前
31秒前
31秒前
二饼发布了新的文献求助10
33秒前
xhnmdl发布了新的文献求助10
34秒前
大龙哥886应助karstbing采纳,获得30
34秒前
36秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563635
求助须知:如何正确求助?哪些是违规求助? 4648551
关于积分的说明 14685268
捐赠科研通 4590482
什么是DOI,文献DOI怎么找? 2518601
邀请新用户注册赠送积分活动 1491196
关于科研通互助平台的介绍 1462478