Regional-scale cotton yield forecast via data-driven spatio-temporal prediction (STP) of solar-induced chlorophyll fluorescence (SIF)

卷积神经网络 比例(比率) 产量(工程) 计算机科学 人工神经网络 环境科学 深度学习 植被(病理学) 遥感 谱线 作物 人工智能 模式识别(心理学) 地质学 地图学 物理 地理 医学 病理 天文 林业 热力学
作者
Xiaoyan Kang,Changping Huang,Lifu Zhang,Huihan Wang,Ze Zhang,Xin Lv
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:299: 113861-113861 被引量:16
标识
DOI:10.1016/j.rse.2023.113861
摘要

Solar-induced chlorophyll fluorescence (SIF), as a direct probe of vegetation photosynthesis, has recently been an effective indicator for crop yield estimation in late-season. Spatio-temporal prediction of SIF (STP-SIF) from mid- to late-season could be a promising solution to forecast crop yields in mid-season. However, STP-SIF has not been well explored in assessing its applicability in crop yield forecasting. In the study, we first explored the potential driving mechanism and designed time-series data-driven deep learning approaches for the STP-SIF issue. We compared the feasibility of four styles of explanatory variables, six network structures, and the corresponding eight approaches in SIF prediction in the main cotton-planting area in Northern Xinjiang, taking the two tasks of one and two months before harvest as examples. The STP-SIF products of the five approaches, namely Spe_CNN-LSTM (a hybrid network combining convolutional neural network and long short-term memory considering spectra), Spe_CNN3D (a three-dimensional CNN considering spectra), SpaSpeSIF_CNN3D (a three-dimensional CNN considering spectra and SIF), SpaSpeSIF_HCNN (a hybrid network combining CNN2D and CNN3D considering spectra and SIF), and SIF_CNN-LSTM (a CNN-LSTM network considering SIF), showed a similar spatial pattern to the referenced SIF, indicating that these proposed approaches could be better for STP-SIF. Discussion of the spatial scale effect of the STP-SIF issue preliminary showed that our proposed methods had little spatial scale dependence and hence could be suitable for STP-SIF in different spatial extents at diverse resolutions. Further, we performed the experiments for the regional-scale cotton yield forecast one to two months before harvest based on the STP-SIF products of August and September. The best cotton yield prediction accuracies, with R2 of 0.70 and 0.66 for one and two months before harvest, were obtained respectively by the combination of the known SIF and NDWI (Normalized Difference Water Index) and the predicted SIF by SIF_CNN-LSTM. This study offers a baseline for the STP-SIF issue and reveals the feasibility of the STP-SIF products for accurate crop yield forecast.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
英俊的铭应助科研小达人采纳,获得10
1秒前
Chelsea发布了新的文献求助50
2秒前
2秒前
小布丁完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
5秒前
张张完成签到,获得积分10
6秒前
7秒前
7秒前
小布丁发布了新的文献求助10
7秒前
GinaLundhild06应助陌然浅笑采纳,获得10
7秒前
在水一方应助luxiuzhen采纳,获得10
7秒前
8秒前
9秒前
呜呜呜呜发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
ken发布了新的文献求助10
10秒前
大模型应助李李李采纳,获得10
11秒前
sn完成签到,获得积分10
11秒前
yy应助张张采纳,获得20
12秒前
超大鹅发布了新的文献求助10
12秒前
深情安青应助寒冬采纳,获得10
14秒前
飞123发布了新的文献求助10
14秒前
夏冰发布了新的文献求助10
14秒前
柠檬柠檬发布了新的文献求助10
14秒前
脑洞疼应助Feathamity采纳,获得10
14秒前
闪闪无敌发布了新的文献求助10
14秒前
晚灯君完成签到 ,获得积分0
15秒前
赘婿应助卧镁铀钳采纳,获得10
15秒前
素素发布了新的文献求助10
17秒前
17秒前
上官若男应助心秦采纳,获得10
17秒前
18秒前
量子星尘发布了新的文献求助10
18秒前
所所应助晴云采纳,获得10
19秒前
呜呜呜呜完成签到,获得积分20
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675761
求助须知:如何正确求助?哪些是违规求助? 4948864
关于积分的说明 15154614
捐赠科研通 4835061
什么是DOI,文献DOI怎么找? 2589850
邀请新用户注册赠送积分活动 1543573
关于科研通互助平台的介绍 1501325