Regional-scale cotton yield forecast via data-driven spatio-temporal prediction (STP) of solar-induced chlorophyll fluorescence (SIF)

卷积神经网络 比例(比率) 产量(工程) 计算机科学 人工神经网络 环境科学 深度学习 植被(病理学) 遥感 谱线 作物 人工智能 模式识别(心理学) 地质学 地图学 物理 地理 医学 病理 天文 林业 热力学
作者
Xiaoyan Kang,Changping Huang,Lifu Zhang,Huihan Wang,Ze Zhang,Xin Lv
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:299: 113861-113861 被引量:3
标识
DOI:10.1016/j.rse.2023.113861
摘要

Solar-induced chlorophyll fluorescence (SIF), as a direct probe of vegetation photosynthesis, has recently been an effective indicator for crop yield estimation in late-season. Spatio-temporal prediction of SIF (STP-SIF) from mid- to late-season could be a promising solution to forecast crop yields in mid-season. However, STP-SIF has not been well explored in assessing its applicability in crop yield forecasting. In the study, we first explored the potential driving mechanism and designed time-series data-driven deep learning approaches for the STP-SIF issue. We compared the feasibility of four styles of explanatory variables, six network structures, and the corresponding eight approaches in SIF prediction in the main cotton-planting area in Northern Xinjiang, taking the two tasks of one and two months before harvest as examples. The STP-SIF products of the five approaches, namely Spe_CNN-LSTM (a hybrid network combining convolutional neural network and long short-term memory considering spectra), Spe_CNN3D (a three-dimensional CNN considering spectra), SpaSpeSIF_CNN3D (a three-dimensional CNN considering spectra and SIF), SpaSpeSIF_HCNN (a hybrid network combining CNN2D and CNN3D considering spectra and SIF), and SIF_CNN-LSTM (a CNN-LSTM network considering SIF), showed a similar spatial pattern to the referenced SIF, indicating that these proposed approaches could be better for STP-SIF. Discussion of the spatial scale effect of the STP-SIF issue preliminary showed that our proposed methods had little spatial scale dependence and hence could be suitable for STP-SIF in different spatial extents at diverse resolutions. Further, we performed the experiments for the regional-scale cotton yield forecast one to two months before harvest based on the STP-SIF products of August and September. The best cotton yield prediction accuracies, with R2 of 0.70 and 0.66 for one and two months before harvest, were obtained respectively by the combination of the known SIF and NDWI (Normalized Difference Water Index) and the predicted SIF by SIF_CNN-LSTM. This study offers a baseline for the STP-SIF issue and reveals the feasibility of the STP-SIF products for accurate crop yield forecast.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tgh发布了新的文献求助10
刚刚
冷艳的海豚完成签到,获得积分10
1秒前
辣辣完成签到,获得积分10
1秒前
巫雨蓝完成签到,获得积分10
1秒前
mm完成签到,获得积分20
1秒前
foreverchoi完成签到,获得积分10
2秒前
张阳阳完成签到,获得积分10
3秒前
李爱国应助謓言采纳,获得10
4秒前
复杂的香菱完成签到,获得积分10
4秒前
高兴的半仙完成签到,获得积分10
4秒前
4秒前
Tim完成签到 ,获得积分10
5秒前
林药师完成签到,获得积分10
5秒前
卡布达完成签到,获得积分10
6秒前
年轻枕头完成签到,获得积分10
6秒前
6秒前
7秒前
研友_8KX15L发布了新的文献求助30
7秒前
KK完成签到,获得积分10
8秒前
陈军举报chrislignin求助涉嫌违规
10秒前
沉着且呵呵完成签到,获得积分10
10秒前
彩色橘子完成签到,获得积分10
10秒前
Raisin完成签到,获得积分10
11秒前
Wanpy完成签到 ,获得积分10
11秒前
yinggill发布了新的文献求助10
11秒前
shellyAPTX4869完成签到,获得积分10
11秒前
lxy完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
hyw完成签到,获得积分10
12秒前
赘婿应助Gao采纳,获得10
13秒前
小王完成签到,获得积分10
13秒前
208完成签到 ,获得积分10
13秒前
尹尹尹完成签到 ,获得积分20
13秒前
calm完成签到 ,获得积分10
13秒前
Roche完成签到,获得积分10
13秒前
13秒前
bkagyin应助Yara.H采纳,获得10
14秒前
卡布完成签到,获得积分10
14秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167416
求助须知:如何正确求助?哪些是违规求助? 2818928
关于积分的说明 7923662
捐赠科研通 2478740
什么是DOI,文献DOI怎么找? 1320438
科研通“疑难数据库(出版商)”最低求助积分说明 632803
版权声明 602443