Determination and classification of fetal sex on ultrasound images with deep learning

随机森林 人工智能 支持向量机 阿达布思 计算机科学 决策树 卷积神经网络 模式识别(心理学) 特征(语言学) 逻辑回归 学习迁移 深度学习 机器学习 超声科 深信不疑网络 人工神经网络 特征向量 集成学习 超声波 医学 特征提取 产前诊断 胎儿 统计分类 医学影像学
作者
Esra Sivari,Zafer Civelek,Seda Şahin
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:240: 122508-122508 被引量:6
标识
DOI:10.1016/j.eswa.2023.122508
摘要

Today, various prenatal diagnostic methods are used to determine the sex of the fetus. All of these medical methods require intervention by a specialist. The sensitivity of fetal ultrasonography (USG) scanning, which is the most commonly used diagnostic method, is variable and depends on the experience of the sonographer. In this study, an automatic, objective and reliable determination of fetal sex was aimed at using deep transfer learning techniques on USG images. For the study, a dataset containing 4400 fetal USG images, of which sexes were labeled by a gynecologist expert in the field, was created. In the first step, images were classified with fine-tuned convolutional neural networks. Following this classification, the fine-tuned DenseNet201 (ft-DenseNet201) network, which gave the most successful result with an accuracy of 0.9627, was used as the feature extractor network in the second step. Obtained features were classified by Logistic Regression (LR), Linear Support Vector Machine (LSVM), K-Nearest Neighbor (KNN), Decision Tree, Random Forest and AdaBoost algorithms. Among the 10 different classifiers used in the application, ft-DenseNet201 + LSVM (0.9782), ft-DenseNet201 + KNN (0.9727) and ft-DenseNet201 + LR (0.9718) algorithms gave very high accuracy values. This study can be evaluated as an automatic, objective, reliable and new medical method in determination of fetus sex; and can be used as an auxiliary system for specialists and patients by being integrated with USG devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李健的小迷弟应助zzz采纳,获得10
1秒前
1秒前
黄奥龙完成签到,获得积分10
1秒前
单于思雁完成签到,获得积分10
2秒前
星辰大海应助虚幻导师采纳,获得10
2秒前
rabwang发布了新的文献求助30
2秒前
mu发布了新的文献求助10
2秒前
3秒前
A健发布了新的文献求助10
3秒前
KIMI发布了新的文献求助10
4秒前
4秒前
单于思雁发布了新的文献求助10
5秒前
nigexiaohua完成签到,获得积分10
5秒前
慈祥的芷云完成签到 ,获得积分10
5秒前
阿辉发布了新的文献求助30
5秒前
6秒前
鲍binyu完成签到,获得积分10
6秒前
Li发布了新的文献求助10
6秒前
Owen应助M.采纳,获得10
6秒前
核桃应助无奈的靖仇采纳,获得30
7秒前
zqk02发布了新的文献求助10
8秒前
ny完成签到,获得积分10
8秒前
古娜拉黑暗之神完成签到,获得积分10
8秒前
ding应助二马三乡采纳,获得10
8秒前
9秒前
A健完成签到,获得积分10
9秒前
lzh发布了新的文献求助30
9秒前
务实的夏菡完成签到,获得积分10
9秒前
求助人员发布了新的文献求助10
10秒前
14岁啦发布了新的文献求助10
10秒前
轻松的天真完成签到,获得积分10
11秒前
12秒前
zzz完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助30
12秒前
13秒前
淡定学姐关注了科研通微信公众号
14秒前
负责的谷云完成签到,获得积分10
15秒前
陶醉枫叶完成签到 ,获得积分10
15秒前
现实的语兰完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718168
求助须知:如何正确求助?哪些是违规求助? 5250844
关于积分的说明 15284812
捐赠科研通 4868418
什么是DOI,文献DOI怎么找? 2614132
邀请新用户注册赠送积分活动 1564020
关于科研通互助平台的介绍 1521476