Determination and classification of fetal sex on ultrasound images with deep learning

超声学家 随机森林 人工智能 支持向量机 阿达布思 计算机科学 决策树 卷积神经网络 模式识别(心理学) 特征(语言学) 逻辑回归 学习迁移 深度学习 机器学习 超声波 医学 放射科 语言学 哲学
作者
Esra Sivari,Zafer Civelek,Seda Şahin
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:240: 122508-122508
标识
DOI:10.1016/j.eswa.2023.122508
摘要

Today, various prenatal diagnostic methods are used to determine the sex of the fetus. All of these medical methods require intervention by a specialist. The sensitivity of fetal ultrasonography (USG) scanning, which is the most commonly used diagnostic method, is variable and depends on the experience of the sonographer. In this study, an automatic, objective and reliable determination of fetal sex was aimed at using deep transfer learning techniques on USG images. For the study, a dataset containing 4400 fetal USG images, of which sexes were labeled by a gynecologist expert in the field, was created. In the first step, images were classified with fine-tuned convolutional neural networks. Following this classification, the fine-tuned DenseNet201 (ft-DenseNet201) network, which gave the most successful result with an accuracy of 0.9627, was used as the feature extractor network in the second step. Obtained features were classified by Logistic Regression (LR), Linear Support Vector Machine (LSVM), K-Nearest Neighbor (KNN), Decision Tree, Random Forest and AdaBoost algorithms. Among the 10 different classifiers used in the application, ft-DenseNet201 + LSVM (0.9782), ft-DenseNet201 + KNN (0.9727) and ft-DenseNet201 + LR (0.9718) algorithms gave very high accuracy values. This study can be evaluated as an automatic, objective, reliable and new medical method in determination of fetus sex; and can be used as an auxiliary system for specialists and patients by being integrated with USG devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助贺知什么书采纳,获得10
1秒前
按摩头了完成签到,获得积分10
1秒前
万能图书馆应助小叙采纳,获得10
1秒前
iNk应助木耳采纳,获得10
1秒前
SCI完成签到,获得积分10
2秒前
Jasper应助苏黎世采纳,获得10
2秒前
3秒前
3秒前
3秒前
3秒前
4秒前
ding应助欣喜的秋灵采纳,获得10
4秒前
5秒前
5秒前
MM发布了新的文献求助10
6秒前
木火灰完成签到,获得积分10
6秒前
小马甲应助万历采纳,获得10
7秒前
木心完成签到,获得积分10
7秒前
麦子发布了新的文献求助10
7秒前
小高发布了新的文献求助10
8秒前
me完成签到,获得积分20
8秒前
Archy发布了新的文献求助10
8秒前
麦子发布了新的文献求助10
8秒前
Rondab应助宋宋采纳,获得10
9秒前
9秒前
萧衍完成签到,获得积分10
9秒前
傻傻的凤灵应助DNase采纳,获得10
10秒前
12秒前
曲奇完成签到,获得积分10
12秒前
me发布了新的文献求助30
12秒前
JamesPei应助科研通管家采纳,获得10
12秒前
12秒前
无花果应助科研通管家采纳,获得10
12秒前
慕青应助科研通管家采纳,获得10
13秒前
852应助科研通管家采纳,获得10
13秒前
科目三应助科研通管家采纳,获得10
13秒前
13秒前
wanci应助科研通管家采纳,获得10
13秒前
英姑应助科研通管家采纳,获得10
13秒前
慕青应助科研通管家采纳,获得10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992518
求助须知:如何正确求助?哪些是违规求助? 3533486
关于积分的说明 11262567
捐赠科研通 3273054
什么是DOI,文献DOI怎么找? 1805922
邀请新用户注册赠送积分活动 882858
科研通“疑难数据库(出版商)”最低求助积分说明 809496