Determination and classification of fetal sex on ultrasound images with deep learning

随机森林 人工智能 支持向量机 阿达布思 计算机科学 决策树 卷积神经网络 模式识别(心理学) 特征(语言学) 逻辑回归 学习迁移 深度学习 机器学习 超声科 深信不疑网络 人工神经网络 特征向量 集成学习 超声波 医学 特征提取 产前诊断 胎儿 统计分类 医学影像学
作者
Esra Sivari,Zafer Civelek,Seda Şahin
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:240: 122508-122508 被引量:6
标识
DOI:10.1016/j.eswa.2023.122508
摘要

Today, various prenatal diagnostic methods are used to determine the sex of the fetus. All of these medical methods require intervention by a specialist. The sensitivity of fetal ultrasonography (USG) scanning, which is the most commonly used diagnostic method, is variable and depends on the experience of the sonographer. In this study, an automatic, objective and reliable determination of fetal sex was aimed at using deep transfer learning techniques on USG images. For the study, a dataset containing 4400 fetal USG images, of which sexes were labeled by a gynecologist expert in the field, was created. In the first step, images were classified with fine-tuned convolutional neural networks. Following this classification, the fine-tuned DenseNet201 (ft-DenseNet201) network, which gave the most successful result with an accuracy of 0.9627, was used as the feature extractor network in the second step. Obtained features were classified by Logistic Regression (LR), Linear Support Vector Machine (LSVM), K-Nearest Neighbor (KNN), Decision Tree, Random Forest and AdaBoost algorithms. Among the 10 different classifiers used in the application, ft-DenseNet201 + LSVM (0.9782), ft-DenseNet201 + KNN (0.9727) and ft-DenseNet201 + LR (0.9718) algorithms gave very high accuracy values. This study can be evaluated as an automatic, objective, reliable and new medical method in determination of fetus sex; and can be used as an auxiliary system for specialists and patients by being integrated with USG devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zik发布了新的文献求助10
1秒前
Guangdi_xu发布了新的文献求助10
1秒前
1秒前
2秒前
顾子墨发布了新的文献求助10
2秒前
大个应助dara采纳,获得30
2秒前
my关闭了my文献求助
3秒前
肖坤发布了新的文献求助10
4秒前
小二郎应助淡然百褶裙采纳,获得10
5秒前
5秒前
炙热紫烟完成签到,获得积分10
5秒前
桃桃子发布了新的文献求助10
5秒前
大模型应助多情问儿采纳,获得10
5秒前
拾叁应助Jimmy Ko采纳,获得10
6秒前
yael发布了新的文献求助10
8秒前
drtftyv完成签到,获得积分10
8秒前
HonamC发布了新的文献求助10
8秒前
小木林发布了新的文献求助10
8秒前
完美世界应助突突突采纳,获得10
9秒前
9秒前
dreamly完成签到,获得积分10
10秒前
清新的惜天关注了科研通微信公众号
10秒前
Lucas应助zik采纳,获得10
11秒前
11秒前
jzkjzk完成签到,获得积分20
12秒前
FashionBoy应助桃桃子采纳,获得10
14秒前
14秒前
zho应助Wang采纳,获得10
15秒前
15秒前
MchemG应助枕安采纳,获得20
15秒前
15秒前
司空若剑完成签到,获得积分10
16秒前
XRWei完成签到 ,获得积分10
16秒前
16秒前
HL应助Yu采纳,获得10
16秒前
袁寒烟发布了新的文献求助10
16秒前
17秒前
领导范儿应助顺心从寒采纳,获得10
17秒前
潇洒的柚子完成签到 ,获得积分10
20秒前
dara发布了新的文献求助30
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589694
求助须知:如何正确求助?哪些是违规求助? 4674337
关于积分的说明 14793127
捐赠科研通 4628980
什么是DOI,文献DOI怎么找? 2532400
邀请新用户注册赠送积分活动 1501066
关于科研通互助平台的介绍 1468487