Determination and classification of fetal sex on ultrasound images with deep learning

随机森林 人工智能 支持向量机 阿达布思 计算机科学 决策树 卷积神经网络 模式识别(心理学) 特征(语言学) 逻辑回归 学习迁移 深度学习 机器学习 超声科 深信不疑网络 人工神经网络 特征向量 集成学习 超声波 医学 特征提取 产前诊断 胎儿 统计分类 医学影像学
作者
Esra Sivari,Zafer Civelek,Seda Şahin
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:240: 122508-122508 被引量:6
标识
DOI:10.1016/j.eswa.2023.122508
摘要

Today, various prenatal diagnostic methods are used to determine the sex of the fetus. All of these medical methods require intervention by a specialist. The sensitivity of fetal ultrasonography (USG) scanning, which is the most commonly used diagnostic method, is variable and depends on the experience of the sonographer. In this study, an automatic, objective and reliable determination of fetal sex was aimed at using deep transfer learning techniques on USG images. For the study, a dataset containing 4400 fetal USG images, of which sexes were labeled by a gynecologist expert in the field, was created. In the first step, images were classified with fine-tuned convolutional neural networks. Following this classification, the fine-tuned DenseNet201 (ft-DenseNet201) network, which gave the most successful result with an accuracy of 0.9627, was used as the feature extractor network in the second step. Obtained features were classified by Logistic Regression (LR), Linear Support Vector Machine (LSVM), K-Nearest Neighbor (KNN), Decision Tree, Random Forest and AdaBoost algorithms. Among the 10 different classifiers used in the application, ft-DenseNet201 + LSVM (0.9782), ft-DenseNet201 + KNN (0.9727) and ft-DenseNet201 + LR (0.9718) algorithms gave very high accuracy values. This study can be evaluated as an automatic, objective, reliable and new medical method in determination of fetus sex; and can be used as an auxiliary system for specialists and patients by being integrated with USG devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
7788发布了新的文献求助10
1秒前
刻苦秋尽发布了新的文献求助10
1秒前
AAA发布了新的文献求助10
2秒前
2秒前
Yy完成签到,获得积分10
3秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
大力帽子应助jyq采纳,获得10
6秒前
sdshi发布了新的文献求助10
6秒前
77发布了新的文献求助10
6秒前
chen完成签到 ,获得积分10
8秒前
8秒前
zdq10068发布了新的文献求助10
8秒前
兰瓜瓜发布了新的文献求助10
9秒前
9秒前
Ye完成签到,获得积分10
9秒前
11秒前
是榤啊完成签到 ,获得积分10
11秒前
11秒前
沉静飞雪发布了新的文献求助10
11秒前
12秒前
Rain完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
14秒前
亮仔发布了新的文献求助10
14秒前
www完成签到,获得积分10
15秒前
Rubyii发布了新的文献求助10
15秒前
zzzzzzz完成签到 ,获得积分10
16秒前
16秒前
16秒前
PORCO完成签到,获得积分10
17秒前
浮游应助Zac采纳,获得10
18秒前
19秒前
英姑应助西子采纳,获得10
20秒前
20秒前
yaoyao发布了新的文献求助10
21秒前
21秒前
yijibaoli完成签到 ,获得积分10
22秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694859
求助须知:如何正确求助?哪些是违规求助? 5099094
关于积分的说明 15214731
捐赠科研通 4851410
什么是DOI,文献DOI怎么找? 2602316
邀请新用户注册赠送积分活动 1554181
关于科研通互助平台的介绍 1512082