Determination and classification of fetal sex on ultrasound images with deep learning

超声学家 随机森林 人工智能 支持向量机 阿达布思 计算机科学 决策树 卷积神经网络 模式识别(心理学) 特征(语言学) 逻辑回归 学习迁移 深度学习 机器学习 超声波 医学 放射科 哲学 语言学
作者
Esra Sivari,Zafer Civelek,Seda Şahin
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:240: 122508-122508
标识
DOI:10.1016/j.eswa.2023.122508
摘要

Today, various prenatal diagnostic methods are used to determine the sex of the fetus. All of these medical methods require intervention by a specialist. The sensitivity of fetal ultrasonography (USG) scanning, which is the most commonly used diagnostic method, is variable and depends on the experience of the sonographer. In this study, an automatic, objective and reliable determination of fetal sex was aimed at using deep transfer learning techniques on USG images. For the study, a dataset containing 4400 fetal USG images, of which sexes were labeled by a gynecologist expert in the field, was created. In the first step, images were classified with fine-tuned convolutional neural networks. Following this classification, the fine-tuned DenseNet201 (ft-DenseNet201) network, which gave the most successful result with an accuracy of 0.9627, was used as the feature extractor network in the second step. Obtained features were classified by Logistic Regression (LR), Linear Support Vector Machine (LSVM), K-Nearest Neighbor (KNN), Decision Tree, Random Forest and AdaBoost algorithms. Among the 10 different classifiers used in the application, ft-DenseNet201 + LSVM (0.9782), ft-DenseNet201 + KNN (0.9727) and ft-DenseNet201 + LR (0.9718) algorithms gave very high accuracy values. This study can be evaluated as an automatic, objective, reliable and new medical method in determination of fetus sex; and can be used as an auxiliary system for specialists and patients by being integrated with USG devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xiaohu完成签到,获得积分10
3秒前
3秒前
3秒前
李健应助三三得九采纳,获得10
4秒前
4秒前
4秒前
blueee1214完成签到,获得积分10
5秒前
Dazzein发布了新的文献求助10
9秒前
拉格朗日完成签到 ,获得积分10
9秒前
JIaaaa发布了新的文献求助10
9秒前
9秒前
9秒前
忐忑的井发布了新的文献求助10
12秒前
cong315发布了新的文献求助10
13秒前
吴彦鸿发布了新的文献求助20
13秒前
Keqi完成签到,获得积分10
14秒前
SciGPT应助结实的问寒采纳,获得10
14秒前
14秒前
CodeCraft应助easy采纳,获得10
15秒前
Akim应助小周采纳,获得10
17秒前
20秒前
21秒前
结实的问寒完成签到,获得积分10
22秒前
elooo完成签到,获得积分20
25秒前
领导范儿应助离线采纳,获得10
26秒前
29秒前
29秒前
elooo发布了新的文献求助10
30秒前
30秒前
三三得九发布了新的文献求助10
33秒前
spotless发布了新的文献求助10
33秒前
长情立诚完成签到,获得积分10
34秒前
贾明灵完成签到,获得积分10
34秒前
小周发布了新的文献求助10
35秒前
35秒前
汉堡包应助风趣安青采纳,获得10
38秒前
酷酷发布了新的文献求助10
39秒前
fc小肥杨完成签到,获得积分10
39秒前
zzy发布了新的文献求助10
39秒前
上官若男应助隔壁老王采纳,获得10
39秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329611
求助须知:如何正确求助?哪些是违规求助? 2959170
关于积分的说明 8594705
捐赠科研通 2637692
什么是DOI,文献DOI怎么找? 1443680
科研通“疑难数据库(出版商)”最低求助积分说明 668807
邀请新用户注册赠送积分活动 656231