A deep learning technique to detect distributed denial of service attacks in software-defined networks

前进飞机 计算机科学 服务拒绝攻击 页眉 网络数据包 计算机网络 软件定义的网络 可扩展性 实时计算 互联网 操作系统
作者
Waheed G. Gadallah,Hosny M. Ibrahim,Nagwa M. Omar
出处
期刊:Computers & Security [Elsevier]
卷期号:137: 103588-103588 被引量:5
标识
DOI:10.1016/j.cose.2023.103588
摘要

Software-Defined Network (SDN) is an established networking paradigm that separates the control plane from the data plane. It has central network control, and programmability facilities, therefore SDN can improve network flexibility, management, performance, and scalability. The programmability and control centralization of SDN have improved network functions but also exposed it to security challenges such as Distributed Denial of Service (DDoS) attacks that target both control and data planes. This paper proposes an effective detection technique against DDoS attack in SDN control plane and data plane. For the control plane, the technique detects DDoS attacks through a Deep Learning (DL) model using new features extracted from traffic statistics. A DL method (AE-BGRU) for DDoS detection uses Autoencoder (AE) with Bidirectional Gated Recurrent Unit (BGRU). The proposed features for the control plane include unknown IP destination address, packets inter-arrival time, Transport layer protocol (TLP) header, and Type of service (ToS) header. For the data plane, the technique tracks the switch's average arrival bit rate with an unknown destination address in the data plane. Then, the technique detects DDoS attacks through a DL-based model which also uses AE with BGRU. The proposed features in the data plane include the switch's stored capacity, the average rate of packets with unknown destination addresses, the IP Options header, and the average number of flows. The dataset is generated from feature extraction and computations from normal and attack packets and used with the classifier. Also, additional Machine Learning (ML) methods are used to enhance the detection process. If the model detects an attack, the technique mitigates DDoS effects by updating the user's trust value and blocking suspicious senders based on the trust value. The experimental results proved that compared to related techniques, the suggested method had a higher accuracy and lower false alarm rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111完成签到,获得积分10
1秒前
1秒前
Mumu发布了新的文献求助10
1秒前
2秒前
52705发布了新的文献求助10
3秒前
传奇3应助46464号采纳,获得10
3秒前
高高完成签到,获得积分10
4秒前
袁宁蔓完成签到,获得积分10
4秒前
lcc发布了新的文献求助10
4秒前
5秒前
6秒前
Singularity应助李麟采纳,获得10
7秒前
圆圈应助李麟采纳,获得10
7秒前
9秒前
Fjj发布了新的文献求助10
10秒前
11秒前
13秒前
隐形曼青应助蒋田姣采纳,获得10
13秒前
小松松完成签到,获得积分10
13秒前
13秒前
14秒前
袁宁蔓发布了新的文献求助10
14秒前
15秒前
烟花应助辰星采纳,获得10
16秒前
17秒前
46464号发布了新的文献求助10
17秒前
sjsuA完成签到,获得积分10
18秒前
xny完成签到,获得积分10
18秒前
18秒前
19秒前
20秒前
21秒前
廖骏完成签到,获得积分10
21秒前
21秒前
白华苍松发布了新的文献求助20
22秒前
ghostR发布了新的文献求助100
23秒前
hayk发布了新的文献求助10
23秒前
23秒前
叮叮发布了新的文献求助10
24秒前
lh完成签到,获得积分20
25秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141929
求助须知:如何正确求助?哪些是违规求助? 2792912
关于积分的说明 7804490
捐赠科研通 2449236
什么是DOI,文献DOI怎么找? 1303108
科研通“疑难数据库(出版商)”最低求助积分说明 626771
版权声明 601291