A deep learning technique to detect distributed denial of service attacks in software-defined networks

前进飞机 计算机科学 服务拒绝攻击 页眉 网络数据包 计算机网络 软件定义的网络 可扩展性 实时计算 互联网 操作系统
作者
Waheed G. Gadallah,Hosny M. Ibrahim,Nagwa M. Omar
出处
期刊:Computers & Security [Elsevier]
卷期号:137: 103588-103588 被引量:5
标识
DOI:10.1016/j.cose.2023.103588
摘要

Software-Defined Network (SDN) is an established networking paradigm that separates the control plane from the data plane. It has central network control, and programmability facilities, therefore SDN can improve network flexibility, management, performance, and scalability. The programmability and control centralization of SDN have improved network functions but also exposed it to security challenges such as Distributed Denial of Service (DDoS) attacks that target both control and data planes. This paper proposes an effective detection technique against DDoS attack in SDN control plane and data plane. For the control plane, the technique detects DDoS attacks through a Deep Learning (DL) model using new features extracted from traffic statistics. A DL method (AE-BGRU) for DDoS detection uses Autoencoder (AE) with Bidirectional Gated Recurrent Unit (BGRU). The proposed features for the control plane include unknown IP destination address, packets inter-arrival time, Transport layer protocol (TLP) header, and Type of service (ToS) header. For the data plane, the technique tracks the switch's average arrival bit rate with an unknown destination address in the data plane. Then, the technique detects DDoS attacks through a DL-based model which also uses AE with BGRU. The proposed features in the data plane include the switch's stored capacity, the average rate of packets with unknown destination addresses, the IP Options header, and the average number of flows. The dataset is generated from feature extraction and computations from normal and attack packets and used with the classifier. Also, additional Machine Learning (ML) methods are used to enhance the detection process. If the model detects an attack, the technique mitigates DDoS effects by updating the user's trust value and blocking suspicious senders based on the trust value. The experimental results proved that compared to related techniques, the suggested method had a higher accuracy and lower false alarm rate.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
卷毛维安完成签到,获得积分10
刚刚
闫辰龙发布了新的文献求助10
1秒前
小林发布了新的文献求助10
2秒前
英俊的铭应助AA18236931952采纳,获得10
2秒前
李华完成签到,获得积分10
3秒前
3秒前
3秒前
nathaliess完成签到,获得积分10
4秒前
4秒前
慕青应助稳重雁易采纳,获得30
4秒前
6秒前
jason完成签到,获得积分10
6秒前
NaNA完成签到,获得积分10
7秒前
啦啦啦完成签到,获得积分10
7秒前
7秒前
王志新完成签到,获得积分10
8秒前
无辜的笑蓝完成签到,获得积分10
8秒前
8秒前
Sicily发布了新的文献求助10
9秒前
林夏完成签到,获得积分10
9秒前
Imcarie完成签到 ,获得积分10
11秒前
肆_完成签到 ,获得积分10
11秒前
无极微光应助缓慢咖啡采纳,获得20
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
赫连烙发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
ququ完成签到,获得积分20
14秒前
隐形曼青应助狄百招采纳,获得10
16秒前
16秒前
17秒前
17秒前
阿狸完成签到,获得积分10
19秒前
nhscyhy发布了新的文献求助10
19秒前
ququ发布了新的文献求助10
19秒前
英俊的铭应助鲁鱼采纳,获得10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5537074
求助须知:如何正确求助?哪些是违规求助? 4624638
关于积分的说明 14592736
捐赠科研通 4565155
什么是DOI,文献DOI怎么找? 2502201
邀请新用户注册赠送积分活动 1480908
关于科研通互助平台的介绍 1452098