A deep learning technique to detect distributed denial of service attacks in software-defined networks

前进飞机 计算机科学 服务拒绝攻击 页眉 网络数据包 计算机网络 软件定义的网络 可扩展性 实时计算 互联网 操作系统
作者
Waheed G. Gadallah,Hosny M. Ibrahim,Nagwa M. Omar
出处
期刊:Computers & Security [Elsevier BV]
卷期号:137: 103588-103588 被引量:5
标识
DOI:10.1016/j.cose.2023.103588
摘要

Software-Defined Network (SDN) is an established networking paradigm that separates the control plane from the data plane. It has central network control, and programmability facilities, therefore SDN can improve network flexibility, management, performance, and scalability. The programmability and control centralization of SDN have improved network functions but also exposed it to security challenges such as Distributed Denial of Service (DDoS) attacks that target both control and data planes. This paper proposes an effective detection technique against DDoS attack in SDN control plane and data plane. For the control plane, the technique detects DDoS attacks through a Deep Learning (DL) model using new features extracted from traffic statistics. A DL method (AE-BGRU) for DDoS detection uses Autoencoder (AE) with Bidirectional Gated Recurrent Unit (BGRU). The proposed features for the control plane include unknown IP destination address, packets inter-arrival time, Transport layer protocol (TLP) header, and Type of service (ToS) header. For the data plane, the technique tracks the switch's average arrival bit rate with an unknown destination address in the data plane. Then, the technique detects DDoS attacks through a DL-based model which also uses AE with BGRU. The proposed features in the data plane include the switch's stored capacity, the average rate of packets with unknown destination addresses, the IP Options header, and the average number of flows. The dataset is generated from feature extraction and computations from normal and attack packets and used with the classifier. Also, additional Machine Learning (ML) methods are used to enhance the detection process. If the model detects an attack, the technique mitigates DDoS effects by updating the user's trust value and blocking suspicious senders based on the trust value. The experimental results proved that compared to related techniques, the suggested method had a higher accuracy and lower false alarm rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星星完成签到,获得积分10
2秒前
追风少年完成签到 ,获得积分10
2秒前
Simpson完成签到 ,获得积分0
2秒前
kks569完成签到,获得积分10
2秒前
二十三月之夜完成签到,获得积分10
2秒前
TanXu发布了新的文献求助30
3秒前
xiao完成签到,获得积分20
3秒前
4秒前
Kelly完成签到,获得积分10
4秒前
山鲁佐德发布了新的文献求助10
4秒前
呼噜呼噜小完成签到,获得积分10
4秒前
要减肥的chao完成签到,获得积分10
5秒前
leishenwang完成签到,获得积分10
5秒前
若安在完成签到,获得积分10
6秒前
醋酸柠檬完成签到,获得积分10
6秒前
safa完成签到,获得积分10
6秒前
活泼红牛完成签到,获得积分10
7秒前
Zhou完成签到,获得积分10
7秒前
麦葭完成签到,获得积分10
8秒前
democienceek完成签到,获得积分10
8秒前
sci2025opt完成签到 ,获得积分10
8秒前
花城完成签到,获得积分10
9秒前
桃花不换酒完成签到,获得积分10
9秒前
qq完成签到 ,获得积分10
9秒前
小爱完成签到,获得积分10
9秒前
大大大大宝凌完成签到,获得积分10
10秒前
10秒前
蜜桃四季春完成签到,获得积分10
10秒前
10秒前
jiachj发布了新的文献求助10
11秒前
donnolea完成签到 ,获得积分10
11秒前
善良的橄榄色芭蕉鲨鱼完成签到,获得积分10
11秒前
felix完成签到,获得积分10
12秒前
小小完成签到,获得积分10
12秒前
Junjie完成签到,获得积分10
13秒前
在水一方应助emm采纳,获得10
13秒前
阳光的雪碧完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助150
15秒前
辛普森发布了新的文献求助10
15秒前
ceci发布了新的文献求助10
16秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5118495
求助须知:如何正确求助?哪些是违规求助? 4324442
关于积分的说明 13472092
捐赠科研通 4157447
什么是DOI,文献DOI怎么找? 2278444
邀请新用户注册赠送积分活动 1280187
关于科研通互助平台的介绍 1218907