A deep learning technique to detect distributed denial of service attacks in software-defined networks

前进飞机 计算机科学 服务拒绝攻击 页眉 网络数据包 计算机网络 软件定义的网络 可扩展性 实时计算 互联网 操作系统
作者
Waheed G. Gadallah,Hosny M. Ibrahim,Nagwa M. Omar
出处
期刊:Computers & Security [Elsevier]
卷期号:137: 103588-103588 被引量:5
标识
DOI:10.1016/j.cose.2023.103588
摘要

Software-Defined Network (SDN) is an established networking paradigm that separates the control plane from the data plane. It has central network control, and programmability facilities, therefore SDN can improve network flexibility, management, performance, and scalability. The programmability and control centralization of SDN have improved network functions but also exposed it to security challenges such as Distributed Denial of Service (DDoS) attacks that target both control and data planes. This paper proposes an effective detection technique against DDoS attack in SDN control plane and data plane. For the control plane, the technique detects DDoS attacks through a Deep Learning (DL) model using new features extracted from traffic statistics. A DL method (AE-BGRU) for DDoS detection uses Autoencoder (AE) with Bidirectional Gated Recurrent Unit (BGRU). The proposed features for the control plane include unknown IP destination address, packets inter-arrival time, Transport layer protocol (TLP) header, and Type of service (ToS) header. For the data plane, the technique tracks the switch's average arrival bit rate with an unknown destination address in the data plane. Then, the technique detects DDoS attacks through a DL-based model which also uses AE with BGRU. The proposed features in the data plane include the switch's stored capacity, the average rate of packets with unknown destination addresses, the IP Options header, and the average number of flows. The dataset is generated from feature extraction and computations from normal and attack packets and used with the classifier. Also, additional Machine Learning (ML) methods are used to enhance the detection process. If the model detects an attack, the technique mitigates DDoS effects by updating the user's trust value and blocking suspicious senders based on the trust value. The experimental results proved that compared to related techniques, the suggested method had a higher accuracy and lower false alarm rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助可爱晓灵采纳,获得10
刚刚
深情安青应助天行马采纳,获得10
1秒前
寇博翔发布了新的文献求助10
1秒前
Lucas应助LHQ采纳,获得10
1秒前
yyyyou完成签到,获得积分10
1秒前
1秒前
1秒前
key发布了新的文献求助10
2秒前
2秒前
狂野傲珊发布了新的文献求助10
2秒前
咸蛋黄蘸酱完成签到,获得积分10
2秒前
2秒前
不懂白完成签到 ,获得积分10
2秒前
Yozzi完成签到,获得积分10
3秒前
3秒前
zero完成签到,获得积分10
3秒前
小卷想读博完成签到,获得积分20
3秒前
paobashan发布了新的文献求助10
3秒前
4秒前
我是老大应助kqd采纳,获得30
4秒前
5秒前
5秒前
CR7应助DX采纳,获得20
5秒前
雷小仙儿完成签到,获得积分10
5秒前
科研通AI6应助VDC采纳,获得10
5秒前
6秒前
尉迟希望应助hkh采纳,获得10
6秒前
丘比特应助T拐拐采纳,获得10
7秒前
Max完成签到 ,获得积分10
7秒前
HH发布了新的文献求助30
7秒前
李爱国应助森系女孩采纳,获得10
8秒前
斯文败类应助Leisure_Lee采纳,获得10
8秒前
不过尔尔发布了新的文献求助10
8秒前
LHQ完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
goldenfleece完成签到,获得积分10
9秒前
zyp发布了新的文献求助10
10秒前
key完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Carbon black : production, properties, and applications. Ch. 4 in Marsh H 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5414271
求助须知:如何正确求助?哪些是违规求助? 4531266
关于积分的说明 14127483
捐赠科研通 4446527
什么是DOI,文献DOI怎么找? 2439442
邀请新用户注册赠送积分活动 1431538
关于科研通互助平台的介绍 1409212