亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A deep learning technique to detect distributed denial of service attacks in software-defined networks

前进飞机 计算机科学 服务拒绝攻击 页眉 网络数据包 计算机网络 软件定义的网络 可扩展性 实时计算 互联网 操作系统
作者
Waheed G. Gadallah,Hosny M. Ibrahim,Nagwa M. Omar
出处
期刊:Computers & Security [Elsevier BV]
卷期号:137: 103588-103588 被引量:5
标识
DOI:10.1016/j.cose.2023.103588
摘要

Software-Defined Network (SDN) is an established networking paradigm that separates the control plane from the data plane. It has central network control, and programmability facilities, therefore SDN can improve network flexibility, management, performance, and scalability. The programmability and control centralization of SDN have improved network functions but also exposed it to security challenges such as Distributed Denial of Service (DDoS) attacks that target both control and data planes. This paper proposes an effective detection technique against DDoS attack in SDN control plane and data plane. For the control plane, the technique detects DDoS attacks through a Deep Learning (DL) model using new features extracted from traffic statistics. A DL method (AE-BGRU) for DDoS detection uses Autoencoder (AE) with Bidirectional Gated Recurrent Unit (BGRU). The proposed features for the control plane include unknown IP destination address, packets inter-arrival time, Transport layer protocol (TLP) header, and Type of service (ToS) header. For the data plane, the technique tracks the switch's average arrival bit rate with an unknown destination address in the data plane. Then, the technique detects DDoS attacks through a DL-based model which also uses AE with BGRU. The proposed features in the data plane include the switch's stored capacity, the average rate of packets with unknown destination addresses, the IP Options header, and the average number of flows. The dataset is generated from feature extraction and computations from normal and attack packets and used with the classifier. Also, additional Machine Learning (ML) methods are used to enhance the detection process. If the model detects an attack, the technique mitigates DDoS effects by updating the user's trust value and blocking suspicious senders based on the trust value. The experimental results proved that compared to related techniques, the suggested method had a higher accuracy and lower false alarm rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
16秒前
20秒前
23秒前
量子星尘发布了新的文献求助10
30秒前
令和完成签到 ,获得积分10
47秒前
48秒前
所所应助Dreamer.采纳,获得10
58秒前
小白加油完成签到 ,获得积分10
1分钟前
2分钟前
守一完成签到,获得积分10
2分钟前
2分钟前
wodetaiyangLLL完成签到 ,获得积分10
3分钟前
3分钟前
量子星尘发布了新的文献求助150
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
打打应助科研通管家采纳,获得10
3分钟前
科研通AI5应助科研通管家采纳,获得30
3分钟前
4分钟前
慕青应助Wei采纳,获得10
4分钟前
4分钟前
Virtual举报可靠的绝音求助涉嫌违规
5分钟前
yyds完成签到,获得积分0
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
柯语雪完成签到 ,获得积分10
5分钟前
5分钟前
馆长应助科研通管家采纳,获得10
5分钟前
所所应助科研通管家采纳,获得10
5分钟前
馆长应助科研通管家采纳,获得10
5分钟前
6分钟前
6分钟前
6分钟前
吴彦祖发布了新的文献求助10
6分钟前
6分钟前
7分钟前
馆长应助科研通管家采纳,获得10
7分钟前
量子星尘发布了新的文献求助10
7分钟前
8分钟前
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4595839
求助须知:如何正确求助?哪些是违规求助? 4008067
关于积分的说明 12408789
捐赠科研通 3686828
什么是DOI,文献DOI怎么找? 2032082
邀请新用户注册赠送积分活动 1065326
科研通“疑难数据库(出版商)”最低求助积分说明 950651