亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Novel Machine Learning Approach to Predict Textbook Outcome in Colectomy

结肠切除术 医学 结果(博弈论) 结直肠外科 逻辑回归 结直肠癌 决策树 普通外科 外科 内科学 机器学习 癌症 腹部外科 计算机科学 数学 数理经济学
作者
Amir Ashraf‐Ganjouei,Fernanda Romero‐Hernández,Patricia C. Conroy,Phoebe Miller,Lucia Calthorpe,Jane Wang,Jackie Jin Lin,Jean Feng,Kimberly S. Kirkwood,Adnan Alseidi,Ankit Sarin,Mohamed A. Adam
出处
期刊:Diseases of The Colon & Rectum [Ovid Technologies (Wolters Kluwer)]
卷期号:67 (2): 322-332 被引量:3
标识
DOI:10.1097/dcr.0000000000003084
摘要

BACKGROUND: Several calculators exist to predict risk of postoperative complications. However, in low-risk procedures such as colectomy, a tool to determine the probability of achieving the ideal outcome could better aid clinical decision-making, especially for high-risk patients. A textbook outcome is a composite measure that serves as a surrogate for the ideal surgical outcome. OBJECTIVE: To identify the most important factors for predicting textbook outcomes in patients with nonmetastatic colon cancer undergoing colectomy and to create a textbook outcome decision support tool using machine learning algorithms. DESIGN: This was a retrospective analysis study. SETTINGS: Data were collected from the American College of Surgeons National Surgical Quality Improvement Program database. PATIENTS: Adult patients undergoing elective colectomy for nonmetastatic colon cancer (2014–2020) were included. MAIN OUTCOME MEASURES: Textbook outcome was the main outcome, defined as no mortality, no 30-day readmission, no postoperative complications, no 30-day reinterventions, and a hospital length of stay of ≤5 days. Four models (logistic regression, decision tree, random forest, and eXtreme Gradient Boosting) were trained and validated. Ultimately, a web-based calculator was developed as proof of concept for clinical application. RESULTS: A total of 20,498 patients who underwent colectomy for nonmetastatic colon cancer were included. Overall, textbook outcome was achieved in 66% of patients. Textbook outcome was more frequently achieved after robotic colectomy (77%), followed by laparoscopic colectomy (68%) and open colectomy (39%, p < 0.001). eXtreme Gradient Boosting was the best performing model (area under the curve = 0.72). The top 5 preoperative variables to predict textbook outcome were surgical approach, patient age, preoperative hematocrit, preoperative oral antibiotic bowel preparation, and patient sex. LIMITATIONS: This study was limited by its retrospective nature of the analysis. CONCLUSIONS: Using textbook outcome as the preferred outcome may be a useful tool in relatively low-risk procedures such as colectomy, and the proposed web-based calculator may aid surgeons in preoperative evaluation and counseling, especially for high-risk patients. See Video Abstract . UN NUEVO ENFOQUE DE APRENDIZAJE AUTOMÁTICO PARA PREDECIR EL RESULTADO DE LOS LIBROS DE TEXTO EN COLECTOMÍA ANTECEDENTES: Existen varias calculadoras para predecir el riesgo de complicaciones posoperatorias. Sin embargo, en procedimientos de bajo riesgo como la colectomía, una herramienta para determinar la probabilidad de lograr el resultado ideal podría ayudar mejor a la toma de decisiones clínicas, especialmente para pacientes de alto riesgo. Un resultado de libro de texto es una medida compuesta que sirve como sustituto del resultado quirúrgico ideal. OBJETIVO: Identificar los factores más importantes para predecir el resultado de los libros de texto en pacientes con cáncer de colon no metastásico sometidos a colectomía y crear una herramienta de apoyo a la toma de decisiones sobre los resultados de los libros de texto utilizando algoritmos de aprendizaje automático. DISEÑO: Este fue un estudio de análisis retrospectivo. AJUSTES: Los datos se obtuvieron de la base de datos del Programa Nacional de Mejora de la Calidad del Colegio Americano de Cirujanos. PACIENTES: Se incluyeron pacientes adultos sometidos a colectomía electiva por cáncer de colon no metastásico (2014-2020). MEDIDAS PRINCIPALES DE RESULTADO: El resultado de los libros de texto fue el resultado principal, definido como ausencia de mortalidad, reingreso a los 30 días, complicaciones posoperatorias, reintervenciones a los 30 días y una estancia hospitalaria ≤5 días. Se entrenaron y validaron cuatro modelos (regresión logística, árbol de decisión, bosque aleatorio y XGBoost). Finalmente, se desarrolló una calculadora basada en la web como prueba de concepto para su aplicación clínica. RESULTADOS: Se incluyeron un total de 20.498 pacientes sometidos a colectomía por cáncer de colon no metastásico. En general, el resultado de los libros de texto se logró en el 66% de los pacientes. Los resultados de los libros de texto se lograron con mayor frecuencia después de la colectomía robótica (77%), seguida de la colectomía laparoscópica (68%) y la colectomía abierta (39%) (p<0,001). XGBoost fue el modelo con mejor rendimiento (AUC=0,72). Los cinco principales variables preoperatorias para predecir el resultado en los libros de texto fueron el abordaje quirúrgico, la edad del paciente, el hematocrito preoperatorio, la preparación intestinal con antibióticos orales preoperatorios y el sexo femenino. LIMITACIONES: Este estudio estuvo limitado por la naturaleza retrospectiva del análisis. CONCLUSIONES: El uso de los resultados de los libros de texto como resultado preferido puede ser una herramienta útil en procedimientos de riesgo relativamente bajo, como la colectomía, y la calculadora basada en la web propuesta puede ayudar a los cirujanos en la evaluación y el asesoramiento preoperatorios, especialmente para pacientes de alto riesgo. (Traducción—Yesenia Rojas-Khalil )
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lcw1998发布了新的文献求助10
刚刚
9秒前
apple完成签到,获得积分10
10秒前
Raunio完成签到,获得积分10
10秒前
my发布了新的文献求助20
15秒前
情怀应助a3265640采纳,获得10
18秒前
leemiii完成签到 ,获得积分10
22秒前
50秒前
a3265640完成签到,获得积分10
50秒前
zero发布了新的文献求助10
53秒前
a3265640发布了新的文献求助10
55秒前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
汉堡包应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
001完成签到,获得积分10
1分钟前
001发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
zero关注了科研通微信公众号
1分钟前
1分钟前
呆毛发布了新的文献求助10
1分钟前
zero发布了新的文献求助10
1分钟前
2分钟前
aa111发布了新的文献求助10
2分钟前
my完成签到,获得积分10
2分钟前
852应助aa111采纳,获得10
2分钟前
零城XL完成签到 ,获得积分10
2分钟前
2分钟前
斿斿发布了新的文献求助10
2分钟前
Guofa.完成签到 ,获得积分10
2分钟前
贱小贱完成签到,获得积分10
2分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得50
3分钟前
paradox完成签到 ,获得积分10
3分钟前
4分钟前
科研顺发布了新的文献求助10
4分钟前
orixero应助科研顺采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Elements of Evolutionary Genetics 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5463288
求助须知:如何正确求助?哪些是违规求助? 4568033
关于积分的说明 14312347
捐赠科研通 4493945
什么是DOI,文献DOI怎么找? 2461987
邀请新用户注册赠送积分活动 1450972
关于科研通互助平台的介绍 1426200