An end-to-end multimodal 3D CNN framework with multi-level features for the prediction of mild cognitive impairment

计算机科学 模态(人机交互) 人工智能 神经影像学 认知障碍 联营 认知 深度学习 图像融合 正电子发射断层摄影术 模式识别(心理学) 图像(数学) 神经科学 心理学
作者
Yanteng Zhang,Xiaohai He,Yixin Liu,Charlene Z. L. Ong,Yan Liu,Qizhi Teng
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:281: 111064-111064 被引量:25
标识
DOI:10.1016/j.knosys.2023.111064
摘要

In recent years, deep learning methods based on brain image have been used for the diagnosis of cognitive impairment-related disorders. With the development of neuroimaging techniques, multi-modality image such as structural magnetic resonance imaging (sMRI) and positron emission tomography (PET) reflect structural and functional information of the brain respectively, and provide more techniques for the diagnosis of cognitive impairment diseases. Combining these complementary image features can lead to more accurate diagnostic assessments compared to using a single modality. Therefore, how to effectively combine multi-modality image features to realize the diagnosis of cognitive impairment disease needs to be further explored. In this work, we propose an end-to-end multimodal 3D CNN framework based on ResNet architecture, which integrates multi-level features obtained under the role of attention mechanisms to better capture subtle differences among brain images, and achieves remarkable diagnostic performance through spatial pyramid pooling strategy and effective fusion of multi-modality features. In this process, we demonstrated that a multimodal framework is more effective by means of non-shared parameters for multi-modality features learning. Moreover, the visualized attention maps show that our model can focus on important brain regions relevant to disease diagnosis. The experimental results demonstrated that our method improved the diagnostic performance in AD diagnosis and MCI conversion prediction by 6.37% and 3.51% compared to the single modality, and it also outperforms some recent state-of-the-art multimodal methods. Especially in AD diagnosis achieved an average accuracy of 94.61%, which provides a more feasible technology for diagnostic assessment of patients with AD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
charint举报DJDJDDDJ求助涉嫌违规
刚刚
Tq完成签到,获得积分10
刚刚
1秒前
1秒前
2秒前
2秒前
2秒前
轻松白开水完成签到 ,获得积分10
3秒前
3秒前
3秒前
jean52158发布了新的文献求助10
4秒前
有人应助周周采纳,获得10
4秒前
细腻的灭龙完成签到,获得积分10
4秒前
科研通AI2S应助LY采纳,获得10
5秒前
时567完成签到,获得积分10
5秒前
可爱的函函应助落桑采纳,获得10
5秒前
5秒前
wgqiang完成签到,获得积分10
5秒前
领导范儿应助Kenney采纳,获得10
5秒前
量子星尘发布了新的文献求助10
7秒前
anni完成签到,获得积分10
7秒前
7秒前
zz发布了新的文献求助10
8秒前
8秒前
桐桐应助painting采纳,获得10
8秒前
朴实迎梅完成签到,获得积分10
8秒前
zxcv完成签到 ,获得积分10
8秒前
9秒前
1212发布了新的文献求助20
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
彭于晏应助woshinidie采纳,获得10
10秒前
10秒前
受伤的豌豆完成签到,获得积分10
10秒前
Ava应助Dana采纳,获得10
10秒前
厄尔尼诺完成签到,获得积分10
10秒前
好运连连完成签到,获得积分10
10秒前
11秒前
期期完成签到,获得积分10
12秒前
wangyue2024发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773843
求助须知:如何正确求助?哪些是违规求助? 5614219
关于积分的说明 15433109
捐赠科研通 4906284
什么是DOI,文献DOI怎么找? 2640157
邀请新用户注册赠送积分活动 1587995
关于科研通互助平台的介绍 1543018