An end-to-end multimodal 3D CNN framework with multi-level features for the prediction of mild cognitive impairment

计算机科学 模态(人机交互) 人工智能 神经影像学 认知障碍 联营 认知 深度学习 图像融合 正电子发射断层摄影术 模式识别(心理学) 图像(数学) 神经科学 心理学
作者
Yanteng Zhang,Xiaohai He,Yixin Liu,Charlene Z. L. Ong,Yan Liu,Qizhi Teng
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:281: 111064-111064 被引量:15
标识
DOI:10.1016/j.knosys.2023.111064
摘要

In recent years, deep learning methods based on brain image have been used for the diagnosis of cognitive impairment-related disorders. With the development of neuroimaging techniques, multi-modality image such as structural magnetic resonance imaging (sMRI) and positron emission tomography (PET) reflect structural and functional information of the brain respectively, and provide more techniques for the diagnosis of cognitive impairment diseases. Combining these complementary image features can lead to more accurate diagnostic assessments compared to using a single modality. Therefore, how to effectively combine multi-modality image features to realize the diagnosis of cognitive impairment disease needs to be further explored. In this work, we propose an end-to-end multimodal 3D CNN framework based on ResNet architecture, which integrates multi-level features obtained under the role of attention mechanisms to better capture subtle differences among brain images, and achieves remarkable diagnostic performance through spatial pyramid pooling strategy and effective fusion of multi-modality features. In this process, we demonstrated that a multimodal framework is more effective by means of non-shared parameters for multi-modality features learning. Moreover, the visualized attention maps show that our model can focus on important brain regions relevant to disease diagnosis. The experimental results demonstrated that our method improved the diagnostic performance in AD diagnosis and MCI conversion prediction by 6.37% and 3.51% compared to the single modality, and it also outperforms some recent state-of-the-art multimodal methods. Especially in AD diagnosis achieved an average accuracy of 94.61%, which provides a more feasible technology for diagnostic assessment of patients with AD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助10
1秒前
大意的星星完成签到,获得积分10
4秒前
愉快的孤容完成签到,获得积分10
6秒前
6秒前
阳佟水蓉完成签到,获得积分10
6秒前
充电宝应助123采纳,获得10
8秒前
杨迪完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助20
9秒前
9秒前
wp发布了新的文献求助10
9秒前
13秒前
hyhyhyhy发布了新的文献求助10
13秒前
LL完成签到,获得积分10
17秒前
JamesPei应助hyhyhyhy采纳,获得10
18秒前
18秒前
tang完成签到,获得积分10
19秒前
19秒前
如意厉完成签到,获得积分10
20秒前
1029zx完成签到,获得积分10
21秒前
xiaoming777完成签到,获得积分10
21秒前
Leo完成签到 ,获得积分10
23秒前
snai1发布了新的文献求助10
23秒前
慕青应助碧蓝的幻悲采纳,获得30
26秒前
HgPP完成签到 ,获得积分10
27秒前
Ankher完成签到,获得积分10
27秒前
田様应助猪头采纳,获得10
29秒前
董H完成签到,获得积分10
29秒前
wp完成签到,获得积分10
29秒前
30秒前
潇洒的灵萱完成签到,获得积分10
30秒前
SciGPT应助清酒采纳,获得10
31秒前
Manzia完成签到,获得积分10
31秒前
32秒前
听风轻语完成签到,获得积分10
33秒前
小刘发布了新的文献求助10
34秒前
CipherSage应助乌拉挂机采纳,获得10
35秒前
35秒前
李敏之发布了新的文献求助10
36秒前
37秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Socialization In The Context Of The Family: Parent-Child Interaction 600
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5011650
求助须知:如何正确求助?哪些是违规求助? 4253023
关于积分的说明 13252960
捐赠科研通 4055663
什么是DOI,文献DOI怎么找? 2218299
邀请新用户注册赠送积分活动 1227935
关于科研通互助平台的介绍 1150088