亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An end-to-end multimodal 3D CNN framework with multi-level features for the prediction of mild cognitive impairment

计算机科学 模态(人机交互) 人工智能 神经影像学 认知障碍 联营 认知 深度学习 图像融合 正电子发射断层摄影术 模式识别(心理学) 图像(数学) 神经科学 心理学
作者
Yanteng Zhang,Xiaohai He,Yixin Liu,Charlene Z. L. Ong,Yan Liu,Qizhi Teng
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:281: 111064-111064 被引量:25
标识
DOI:10.1016/j.knosys.2023.111064
摘要

In recent years, deep learning methods based on brain image have been used for the diagnosis of cognitive impairment-related disorders. With the development of neuroimaging techniques, multi-modality image such as structural magnetic resonance imaging (sMRI) and positron emission tomography (PET) reflect structural and functional information of the brain respectively, and provide more techniques for the diagnosis of cognitive impairment diseases. Combining these complementary image features can lead to more accurate diagnostic assessments compared to using a single modality. Therefore, how to effectively combine multi-modality image features to realize the diagnosis of cognitive impairment disease needs to be further explored. In this work, we propose an end-to-end multimodal 3D CNN framework based on ResNet architecture, which integrates multi-level features obtained under the role of attention mechanisms to better capture subtle differences among brain images, and achieves remarkable diagnostic performance through spatial pyramid pooling strategy and effective fusion of multi-modality features. In this process, we demonstrated that a multimodal framework is more effective by means of non-shared parameters for multi-modality features learning. Moreover, the visualized attention maps show that our model can focus on important brain regions relevant to disease diagnosis. The experimental results demonstrated that our method improved the diagnostic performance in AD diagnosis and MCI conversion prediction by 6.37% and 3.51% compared to the single modality, and it also outperforms some recent state-of-the-art multimodal methods. Especially in AD diagnosis achieved an average accuracy of 94.61%, which provides a more feasible technology for diagnostic assessment of patients with AD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助读书的时候采纳,获得10
15秒前
坦率的文龙完成签到,获得积分10
20秒前
白华苍松完成签到,获得积分10
24秒前
心灵美的石头完成签到,获得积分10
29秒前
39秒前
华仔应助读书的时候采纳,获得10
58秒前
59秒前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
酷炫的爆米花完成签到,获得积分10
1分钟前
trophozoite完成签到 ,获得积分10
1分钟前
1分钟前
美美林完成签到 ,获得积分10
1分钟前
1分钟前
顾矜应助Mine采纳,获得10
1分钟前
LucyMartinez发布了新的文献求助20
1分钟前
1分钟前
1分钟前
赵赵完成签到 ,获得积分10
1分钟前
1分钟前
蓝色牛马发布了新的文献求助10
1分钟前
1分钟前
1分钟前
科研通AI2S应助爱吃大米饭采纳,获得10
2分钟前
2分钟前
传奇3应助李甄好采纳,获得10
2分钟前
2分钟前
LucyMartinez发布了新的文献求助20
2分钟前
2分钟前
2分钟前
小怪完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
Ägyptische Geschichte der 21.–30. Dynastie 1520
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739664
求助须知:如何正确求助?哪些是违规求助? 5388233
关于积分的说明 15339861
捐赠科研通 4882052
什么是DOI,文献DOI怎么找? 2624113
邀请新用户注册赠送积分活动 1572832
关于科研通互助平台的介绍 1529616