An end-to-end multimodal 3D CNN framework with multi-level features for the prediction of mild cognitive impairment

计算机科学 模态(人机交互) 人工智能 神经影像学 认知障碍 联营 认知 深度学习 图像融合 正电子发射断层摄影术 模式识别(心理学) 图像(数学) 神经科学 心理学
作者
Yanteng Zhang,Xiaohai He,Yixin Liu,Charlene Zhi Lin Ong,Yan Liu,Qizhi Teng
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:281: 111064-111064
标识
DOI:10.1016/j.knosys.2023.111064
摘要

In recent years, deep learning methods based on brain image have been used for the diagnosis of cognitive impairment-related disorders. With the development of neuroimaging techniques, multi-modality image such as structural magnetic resonance imaging (sMRI) and positron emission tomography (PET) reflect structural and functional information of the brain respectively, and provide more techniques for the diagnosis of cognitive impairment diseases. Combining these complementary image features can lead to more accurate diagnostic assessments compared to using a single modality. Therefore, how to effectively combine multi-modality image features to realize the diagnosis of cognitive impairment disease needs to be further explored. In this work, we propose an end-to-end multimodal 3D CNN framework based on ResNet architecture, which integrates multi-level features obtained under the role of attention mechanisms to better capture subtle differences among brain images, and achieves remarkable diagnostic performance through spatial pyramid pooling strategy and effective fusion of multi-modality features. In this process, we demonstrated that a multimodal framework is more effective by means of non-shared parameters for multi-modality features learning. Moreover, the visualized attention maps show that our model can focus on important brain regions relevant to disease diagnosis. The experimental results demonstrated that our method improved the diagnostic performance in AD diagnosis and MCI conversion prediction by 6.37% and 3.51% compared to the single modality, and it also outperforms some recent state-of-the-art multimodal methods. Especially in AD diagnosis achieved an average accuracy of 94.61%, which provides a more feasible technology for diagnostic assessment of patients with AD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小蘑菇应助叶白山采纳,获得10
1秒前
南敏株完成签到,获得积分10
1秒前
2秒前
史道夫发布了新的文献求助10
2秒前
搜集达人应助粑粑采纳,获得10
2秒前
llzuo发布了新的文献求助10
2秒前
田様应助张张采纳,获得10
2秒前
不奈何完成签到,获得积分10
3秒前
4秒前
欧耶欧椰完成签到 ,获得积分10
4秒前
5秒前
xiaoguang li发布了新的文献求助10
5秒前
文文发布了新的文献求助10
5秒前
zjsu_zpz完成签到,获得积分10
5秒前
兰禅子发布了新的文献求助100
6秒前
王洵完成签到,获得积分10
6秒前
7秒前
Akim应助张奕冰采纳,获得10
8秒前
9秒前
夜秋瞳完成签到,获得积分10
9秒前
9秒前
clyhg完成签到,获得积分10
9秒前
史道夫完成签到,获得积分10
10秒前
Lei发布了新的文献求助10
10秒前
FDDZG完成签到,获得积分10
10秒前
S77完成签到,获得积分10
11秒前
咸蛋黄巧克力完成签到,获得积分10
11秒前
沈海发布了新的文献求助10
11秒前
早发论文完成签到,获得积分10
12秒前
冷傲可仁关注了科研通微信公众号
12秒前
wfy完成签到,获得积分10
12秒前
科目三应助猷鲛采纳,获得10
13秒前
芜湖完成签到,获得积分10
13秒前
辉辉完成签到,获得积分10
13秒前
高高的山兰完成签到 ,获得积分10
13秒前
13秒前
夏远航应助矩阵分析应用采纳,获得30
14秒前
Orange应助科研小白采纳,获得10
14秒前
Peter完成签到 ,获得积分10
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147236
求助须知:如何正确求助?哪些是违规求助? 2798534
关于积分的说明 7829576
捐赠科研通 2455246
什么是DOI,文献DOI怎么找? 1306655
科研通“疑难数据库(出版商)”最低求助积分说明 627883
版权声明 601567