已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Clinical study of multifactorial diagnosis in prostate biopsy

医学 前列腺癌 前列腺 前列腺疾病 活检 前列腺活检 病理 前列腺疾病 泌尿科 内科学 癌症
作者
Jialei Li,Kexin Wang,Song Li,Pengsheng Wu,Xiangpeng Wang,Yi He,Wen-Rui Tang
出处
期刊:The Prostate [Wiley]
卷期号:83 (15): 1494-1503 被引量:1
标识
DOI:10.1002/pros.24608
摘要

To study the feasibility of using an artificial intelligence (AI) algorithm for the diagnosis of clinically significant prostate cancer (csPCa) on multiparametric MRI (mpMRI) in combination with conventional clinical information.A retrospective study cohort with 505 patients was collected, with complete information on age (≤60, 60-80, and >80 years), PSA (≤4, 4-10, and >10 ng/dL), and pathology results. The patients with ISUP group >2 were classified as csPCa, and the patients with ISUP = 1 or no evidence of prostate cancer were classified as non-csPCa. The diagnosis of mpMRI was made by experienced radiologists following the prostate imaging reporting and data system (PIRADS ≤ 2, PIRADS = 3, and PIRADS > 3). The mpMRI images were processed by a homemade AI algorithm, and the AI results were obtained as positive or negative for csPCa. Two logistic regression models were fitted, with pathological findings as the dependent variable, that is, a conventional model and an AI model. The conventional model used age, PSA, and PIRADS as the independent variables. The AI model took the AI result and the abovementioned clinical information as the independent variables. The predicted probability of the patients from the conventional model and the AI model were used to test the prediction efficacy of the models. The DeLong test was performed to compare differences in the area under the receiver operating characteristic (ROC) area under the curve (AUC) between the conventional model and the AI model.In total, 505 patients were included in the study; 280 were diagnosed with csPCa, and 225 were non-csPCa. The median age was 72.0 (67.0, 76.0) years, with a median PSA value of 13.0 (7.46, 27.5) ng/dL. Statically significant differences were found in age, PSA, PIRADS score and AI results between the csPCa and non-csPCa groups (all p < 0.001). In the multivariable regression models, all the variables were independently associated with csPCa. The conventional model (R2 = 0.361) and the AI model (R2 = 0.474) were compared with analysis of variance (ANOVA) and showed statistically significant differences (χ2 = 63.695, p < 0.001). The AUC of the ROC curve for the conventional model was 0.782 (95% confidence interval [CI]: 0.742-0.823), which was less than the AUC of the AI model with statistical significance (0.849 [95% CI: 0.815-0.883], p < 0.001).In combination with routine clinical information, such as age, PSA, and PIRADS category, adding information from the AI algorithm based on mpMRI could improve the diagnosis of csPCa.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李世昌完成签到,获得积分20
1秒前
4秒前
SciGPT应助ty120采纳,获得10
4秒前
zzq发布了新的文献求助10
4秒前
佑hui关注了科研通微信公众号
8秒前
研友_VZG7GZ应助zzq采纳,获得10
9秒前
钟小凯发布了新的文献求助10
9秒前
光坠星海完成签到 ,获得积分10
9秒前
10秒前
morena发布了新的文献求助10
11秒前
阿洁发布了新的文献求助10
11秒前
12秒前
lilili应助鱼鱼鱼采纳,获得10
13秒前
郑亚铎发布了新的文献求助10
14秒前
坚定汝燕完成签到 ,获得积分10
18秒前
桃花落完成签到,获得积分10
18秒前
18秒前
Young发布了新的文献求助10
18秒前
kiko完成签到,获得积分10
19秒前
19秒前
香翔想相完成签到,获得积分10
20秒前
桃花落发布了新的文献求助10
21秒前
22秒前
解语花发布了新的文献求助10
23秒前
24秒前
田様应助郑亚铎采纳,获得10
24秒前
聪慧的正豪应助lvzhechen采纳,获得10
25秒前
25秒前
Jara发布了新的文献求助30
25秒前
小学生完成签到 ,获得积分10
26秒前
chengenyuan发布了新的文献求助10
26秒前
27秒前
B站萧亚轩发布了新的文献求助10
29秒前
Dawson完成签到,获得积分10
31秒前
32秒前
ajiwjn发布了新的文献求助10
32秒前
33秒前
34秒前
34秒前
冷酷雪碧发布了新的文献求助10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 1200
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4943657
求助须知:如何正确求助?哪些是违规求助? 4208947
关于积分的说明 13084244
捐赠科研通 3988330
什么是DOI,文献DOI怎么找? 2183567
邀请新用户注册赠送积分活动 1199094
关于科研通互助平台的介绍 1111805