Synthesized 7T MPRAGE From 3T MPRAGE Using Generative Adversarial Network and Validation in Clinical Brain Imaging: A Feasibility Study

对比度(视觉) 威尔科克森符号秩检验 图像质量 组内相关 核医学 计算机科学 医学 人工智能 图像(数学) 曼惠特尼U检验 临床心理学 内科学 心理测量学
作者
Caohui Duan,Xiangbing Bian,Kun Cheng,Jinhao Lyu,Yongqin Xiong,Sa Xiao,Xueyang Wang,Qi Duan,Chenxi Li,Jiayu Huang,Jianxing Hu,Z. Wang,Xin Zhou,Xin Lou
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:59 (5): 1620-1629 被引量:4
标识
DOI:10.1002/jmri.28944
摘要

Background Ultra‐high field 7T MRI can provide excellent tissue contrast and anatomical details, but is often cost prohibitive, and is not widely accessible in clinical practice. Purpose To generate synthetic 7T images from widely acquired 3T images with deep learning and to evaluate the feasibility of this approach for brain imaging. Study Type Prospective. Population 33 healthy volunteers and 89 patients with brain diseases, divided into training, and evaluation datasets in the ratio 4:1. Sequence and Field Strength T1‐weighted nonenhanced or contrast‐enhanced magnetization‐prepared rapid acquisition gradient‐echo sequence at both 3T and 7T. Assessment A generative adversarial network (SynGAN) was developed to produce synthetic 7T images from 3T images as input. SynGAN training and evaluation were performed separately for nonenhanced and contrast‐enhanced paired acquisitions. Qualitative image quality of acquired 3T and 7T images and of synthesized 7T images was evaluated by three radiologists in terms of overall image quality, artifacts, sharpness, contrast, and visualization of vessel using 5‐point Likert scales. Statistical Tests Wilcoxon signed rank tests to compare synthetic 7T images with acquired 7T and 3T images and intraclass correlation coefficients to evaluate interobserver variability. P < 0.05 was considered significant. Results Of the 122 paired 3T and 7T MRI scans, 66 were acquired without contrast agent and 56 with contrast agent. The average time to generate synthetic images was ~11.4 msec per slice (2.95 sec per participant). The synthetic 7T images achieved significantly improved tissue contrast and sharpness in comparison to 3T images in both nonenhanced and contrast‐enhanced subgroups. Meanwhile, there was no significant difference between acquired 7T and synthetic 7T images in terms of all the evaluation criteria for both nonenhanced and contrast‐enhanced subgroups ( P ≥ 0.180). Data Conclusion The deep learning model has potential to generate synthetic 7T images with similar image quality to acquired 7T images. Level of Evidence 2 Technical Efficacy Stage 1
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大胆凡白完成签到 ,获得积分10
刚刚
秀儿发布了新的文献求助10
刚刚
刚刚
明亮灭绝发布了新的文献求助30
刚刚
Hello应助yukaka采纳,获得10
刚刚
科研狗发布了新的文献求助10
刚刚
欣欣完成签到,获得积分10
1秒前
1秒前
英俊的铭应助夕沫采纳,获得10
1秒前
2秒前
lcj1014发布了新的文献求助10
2秒前
LEEPLUM完成签到,获得积分10
2秒前
尼莫发布了新的文献求助10
2秒前
2秒前
小魏发布了新的文献求助10
3秒前
两块发布了新的文献求助10
3秒前
3秒前
4秒前
斯文败类应助silvia-z采纳,获得10
4秒前
脑洞疼应助派大星不科研采纳,获得10
4秒前
4秒前
香妃发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
7秒前
苹果犀牛发布了新的文献求助50
8秒前
9秒前
huhuhuhu发布了新的文献求助10
9秒前
GDN完成签到 ,获得积分10
9秒前
子时过发布了新的文献求助10
10秒前
10秒前
liyingbo发布了新的文献求助10
10秒前
11秒前
余升尃完成签到,获得积分10
12秒前
科研通AI6应助家秋白采纳,获得10
15秒前
16秒前
李爱国应助水刃木采纳,获得10
16秒前
舒心的芮发布了新的文献求助10
16秒前
SciGPT应助章鱼哥采纳,获得10
17秒前
无情灯泡发布了新的文献求助10
17秒前
香蕉觅云应助红涛采纳,获得10
17秒前
yikefan发布了新的文献求助10
19秒前
高分求助中
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5240292
求助须知:如何正确求助?哪些是违规求助? 4407460
关于积分的说明 13718708
捐赠科研通 4276138
什么是DOI,文献DOI怎么找? 2346403
邀请新用户注册赠送积分活动 1343568
关于科研通互助平台的介绍 1301572