Synthesized 7T MPRAGE From 3T MPRAGE Using Generative Adversarial Network and Validation in Clinical Brain Imaging: A Feasibility Study

对比度(视觉) 威尔科克森符号秩检验 图像质量 组内相关 核医学 计算机科学 医学 人工智能 图像(数学) 曼惠特尼U检验 临床心理学 内科学 心理测量学
作者
Caohui Duan,Xiangbing Bian,Kun Cheng,Jinhao Lyu,Yongqin Xiong,Sa Xiao,Xueyang Wang,Qi Duan,Chenxi Li,Jiayu Huang,Jianxing Hu,Z. Wang,Xin Zhou,Xin Lou
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:59 (5): 1620-1629 被引量:9
标识
DOI:10.1002/jmri.28944
摘要

Background Ultra‐high field 7T MRI can provide excellent tissue contrast and anatomical details, but is often cost prohibitive, and is not widely accessible in clinical practice. Purpose To generate synthetic 7T images from widely acquired 3T images with deep learning and to evaluate the feasibility of this approach for brain imaging. Study Type Prospective. Population 33 healthy volunteers and 89 patients with brain diseases, divided into training, and evaluation datasets in the ratio 4:1. Sequence and Field Strength T1‐weighted nonenhanced or contrast‐enhanced magnetization‐prepared rapid acquisition gradient‐echo sequence at both 3T and 7T. Assessment A generative adversarial network (SynGAN) was developed to produce synthetic 7T images from 3T images as input. SynGAN training and evaluation were performed separately for nonenhanced and contrast‐enhanced paired acquisitions. Qualitative image quality of acquired 3T and 7T images and of synthesized 7T images was evaluated by three radiologists in terms of overall image quality, artifacts, sharpness, contrast, and visualization of vessel using 5‐point Likert scales. Statistical Tests Wilcoxon signed rank tests to compare synthetic 7T images with acquired 7T and 3T images and intraclass correlation coefficients to evaluate interobserver variability. P < 0.05 was considered significant. Results Of the 122 paired 3T and 7T MRI scans, 66 were acquired without contrast agent and 56 with contrast agent. The average time to generate synthetic images was ~11.4 msec per slice (2.95 sec per participant). The synthetic 7T images achieved significantly improved tissue contrast and sharpness in comparison to 3T images in both nonenhanced and contrast‐enhanced subgroups. Meanwhile, there was no significant difference between acquired 7T and synthetic 7T images in terms of all the evaluation criteria for both nonenhanced and contrast‐enhanced subgroups ( P ≥ 0.180). Data Conclusion The deep learning model has potential to generate synthetic 7T images with similar image quality to acquired 7T images. Level of Evidence 2 Technical Efficacy Stage 1
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoze完成签到 ,获得积分10
刚刚
Rylee完成签到,获得积分10
刚刚
JamesPei应助顶天立地采纳,获得10
1秒前
妖精完成签到 ,获得积分10
2秒前
zxt发布了新的文献求助10
2秒前
caiia完成签到,获得积分20
2秒前
兰兰猪头完成签到,获得积分20
3秒前
三得利的乌龙茶完成签到 ,获得积分10
3秒前
斯文败类应助英勇的醉蓝采纳,获得10
5秒前
Qing完成签到,获得积分10
6秒前
一颗煤炭完成签到 ,获得积分0
8秒前
hczong完成签到,获得积分10
9秒前
靓丽的悒完成签到 ,获得积分10
10秒前
10秒前
DDDD发布了新的文献求助10
10秒前
Rylee完成签到,获得积分10
11秒前
11秒前
楼马完成签到 ,获得积分10
12秒前
采花大盗完成签到,获得积分10
14秒前
李静发布了新的文献求助10
14秒前
乱世完成签到,获得积分10
15秒前
15秒前
顶天立地发布了新的文献求助10
16秒前
lxl220发布了新的文献求助10
19秒前
fsf完成签到,获得积分10
20秒前
深情安青应助whisper采纳,获得10
21秒前
zcbb完成签到,获得积分10
21秒前
小齐爱科研完成签到,获得积分10
21秒前
田様应助贪玩的幻姬采纳,获得20
25秒前
撒旦asd发布了新的文献求助10
25秒前
zxt发布了新的文献求助10
26秒前
墨林完成签到,获得积分10
27秒前
27秒前
动听的谷秋完成签到 ,获得积分10
28秒前
正午完成签到,获得积分10
29秒前
29秒前
niuya发布了新的文献求助10
31秒前
34秒前
chen完成签到,获得积分10
35秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604076
求助须知:如何正确求助?哪些是违规求助? 4688879
关于积分的说明 14856774
捐赠科研通 4696188
什么是DOI,文献DOI怎么找? 2541118
邀请新用户注册赠送积分活动 1507302
关于科研通互助平台的介绍 1471851