亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Synthesized 7T MPRAGE From 3T MPRAGE Using Generative Adversarial Network and Validation in Clinical Brain Imaging: A Feasibility Study

对比度(视觉) 威尔科克森符号秩检验 图像质量 组内相关 核医学 计算机科学 医学 人工智能 图像(数学) 曼惠特尼U检验 临床心理学 内科学 心理测量学
作者
Caohui Duan,Xiangbing Bian,Kun Cheng,Jinhao Lyu,Yongqin Xiong,Sa Xiao,Xueyang Wang,Qi Duan,Chenxi Li,Jiayu Huang,Jianxing Hu,Z. Wang,Xin Zhou,Xin Lou
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:59 (5): 1620-1629 被引量:2
标识
DOI:10.1002/jmri.28944
摘要

Background Ultra‐high field 7T MRI can provide excellent tissue contrast and anatomical details, but is often cost prohibitive, and is not widely accessible in clinical practice. Purpose To generate synthetic 7T images from widely acquired 3T images with deep learning and to evaluate the feasibility of this approach for brain imaging. Study Type Prospective. Population 33 healthy volunteers and 89 patients with brain diseases, divided into training, and evaluation datasets in the ratio 4:1. Sequence and Field Strength T1‐weighted nonenhanced or contrast‐enhanced magnetization‐prepared rapid acquisition gradient‐echo sequence at both 3T and 7T. Assessment A generative adversarial network (SynGAN) was developed to produce synthetic 7T images from 3T images as input. SynGAN training and evaluation were performed separately for nonenhanced and contrast‐enhanced paired acquisitions. Qualitative image quality of acquired 3T and 7T images and of synthesized 7T images was evaluated by three radiologists in terms of overall image quality, artifacts, sharpness, contrast, and visualization of vessel using 5‐point Likert scales. Statistical Tests Wilcoxon signed rank tests to compare synthetic 7T images with acquired 7T and 3T images and intraclass correlation coefficients to evaluate interobserver variability. P < 0.05 was considered significant. Results Of the 122 paired 3T and 7T MRI scans, 66 were acquired without contrast agent and 56 with contrast agent. The average time to generate synthetic images was ~11.4 msec per slice (2.95 sec per participant). The synthetic 7T images achieved significantly improved tissue contrast and sharpness in comparison to 3T images in both nonenhanced and contrast‐enhanced subgroups. Meanwhile, there was no significant difference between acquired 7T and synthetic 7T images in terms of all the evaluation criteria for both nonenhanced and contrast‐enhanced subgroups ( P ≥ 0.180). Data Conclusion The deep learning model has potential to generate synthetic 7T images with similar image quality to acquired 7T images. Level of Evidence 2 Technical Efficacy Stage 1
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喵喵发布了新的文献求助230
1秒前
1秒前
3秒前
86400完成签到,获得积分10
13秒前
19秒前
香蕉觅云应助zhangyimg采纳,获得10
23秒前
天天快乐应助Sahar采纳,获得10
24秒前
26秒前
28秒前
uu发布了新的文献求助10
33秒前
haokeyan发布了新的文献求助10
33秒前
37秒前
39秒前
haokeyan完成签到,获得积分10
41秒前
Sahar发布了新的文献求助10
43秒前
竹子完成签到,获得积分10
46秒前
无花果应助科研通管家采纳,获得10
54秒前
科研通AI5应助科研通管家采纳,获得10
54秒前
m(_._)m完成签到 ,获得积分0
56秒前
内向耷完成签到 ,获得积分20
1分钟前
Sahar完成签到,获得积分10
1分钟前
1分钟前
1分钟前
sukii发布了新的文献求助30
1分钟前
1分钟前
zhangyimg发布了新的文献求助10
1分钟前
1分钟前
喵喵完成签到,获得积分10
1分钟前
1分钟前
sukii完成签到,获得积分20
1分钟前
SciGPT应助科研小白采纳,获得10
1分钟前
土豪的摩托完成签到 ,获得积分10
1分钟前
Alanni完成签到 ,获得积分10
1分钟前
SHD完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
长情黄蜂发布了新的文献求助10
2分钟前
2分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561907
求助须知:如何正确求助?哪些是违规求助? 3135489
关于积分的说明 9412388
捐赠科研通 2835888
什么是DOI,文献DOI怎么找? 1558793
邀请新用户注册赠送积分活动 728452
科研通“疑难数据库(出版商)”最低求助积分说明 716832