析氧
电催化剂
材料科学
密度泛函理论
分解水
氢
氧气
铂金
化学工程
催化作用
化学物理
电极
物理化学
电化学
化学
计算化学
工程类
光催化
生物化学
有机化学
作者
Guruprasad A. Bhinge,Atul D. Teli,Nilesh N. Kengar,Siddhi S. Dakave,A.K. Bhosale,S.C. Yadav,C.M. Kanamadi
标识
DOI:10.1016/j.surfin.2023.103249
摘要
The use of noble metals such as platinum (Pt) in electrocatalysts for oxygen and hydrogen evolution reactions has been studied for many years. However, the related electrocatalytic activity must be on par with Pt-based electrodes because of their high cost. Therefore, an attempt is made to find a low-cost alternative material that can show good electrocatalytic performance. In this work, we focused on M-Fe2O4 (M = Co, Ni, and Cu) as a potential electrocatalyst for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) and theoretically studied it. As per our knowledge, no research regarding the theoretical investigation of an HER and OER electrocatalytic association with M-Fe2O4 is reported. This work is a simulation-based study on density functional theory to examine the combined electrocatalytic activity of M-Fe2O4 for HER and OER. The properties of the HER and OER processes, including the density of states, binding energies, band structure, charge transfer, and minimum-energy path, are studied and discussed. It is discovered that the energy barrier of the HER activity was computed lower in Ni-Fe2O4 is 0.046 eV, and the low computed energy barrier for OER in Co-Fe2O4 of 98 mV, irrespective of how it is set up. As a result, the study makes a detailed prediction that the suggested structure enhances MFe2O4's intrinsic electrocatalytic activity.
科研通智能强力驱动
Strongly Powered by AbleSci AI