亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CUDU-Net: Collaborative up-sampling decoder U-Net for leaf vein segmentation

网(多面体) 分割 计算机科学 采样(信号处理) 人工智能 数学 计算机视觉 滤波器(信号处理) 几何学
作者
Wanqiang Cai,Bin Wang,Fanqing Zeng
出处
期刊:Digital Signal Processing [Elsevier]
卷期号:144: 104287-104287 被引量:5
标识
DOI:10.1016/j.dsp.2023.104287
摘要

Leaf vein is a common visual pattern in nature which provides potential clues for species identification, health evaluation, and variety selection of plants. However, as a critical step in leaf vein pattern analysis, segmenting vein from leaf image remains unaddressed due to its hierarchical curvilinear structure and busy background. In this study, we for the first time design a deep model which is tailored to address the segmentation of overall leaf vein structure. The proposed deep model, termed Collaborative Up-sampling Decoder U-Net (CUDU-Net), is an improved U-Net structure consisting of a fine-tuned ResNet extractor and a collaborative up-sampling decoder. The ResNet extractor utilizes residual module to explore high-dimensional features that are representative and abstract in the hidden layers of the network. The core of CUDU-Net is the collaborative up-sampling decoder which utilizes the complementarity of the bilinear-interpolation and deconvolution, to enhance the decoding capability of the model. The bilinear-interpolation can recovery key veins while the deconvolution actively learns to supplement more fine-grained features of the tertiary veins. In addition, we embed the strip pooling in the skip-connection to distill the vein-related semantics for performance boosting. Two leaf vein segmentation datasets, termed SoyVein500 and CottVein20, are built for model validation and generalization ability test. The extensive experimental results show that our proposed CUDU-Net outperforms the state-of-the-art methods in both segmentation accuracy and generalization ability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
安尔完成签到 ,获得积分10
24秒前
简单应助司空天德采纳,获得40
29秒前
Asura完成签到,获得积分10
43秒前
古月完成签到 ,获得积分10
1分钟前
ABCD完成签到 ,获得积分10
1分钟前
1分钟前
滋滋发布了新的文献求助10
1分钟前
滋滋完成签到,获得积分20
1分钟前
波里舞完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
毛毛发布了新的文献求助10
2分钟前
2分钟前
2分钟前
赘婿应助科研通管家采纳,获得10
2分钟前
2分钟前
Yuanyuan发布了新的文献求助10
2分钟前
2分钟前
2分钟前
3分钟前
矮小的白猫完成签到,获得积分10
3分钟前
3分钟前
3分钟前
小刘小刘发布了新的文献求助10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
Yuanyuan发布了新的文献求助10
3分钟前
3分钟前
彭进水完成签到 ,获得积分10
3分钟前
情怀应助小刘小刘采纳,获得80
3分钟前
4分钟前
4分钟前
Yuanyuan发布了新的文献求助10
4分钟前
4分钟前
烟花应助科研通管家采纳,获得10
4分钟前
JamesPei应助77采纳,获得10
4分钟前
阿K完成签到,获得积分10
4分钟前
sophy发布了新的文献求助20
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788831
求助须知:如何正确求助?哪些是违规求助? 5712404
关于积分的说明 15473943
捐赠科研通 4916818
什么是DOI,文献DOI怎么找? 2646580
邀请新用户注册赠送积分活动 1594269
关于科研通互助平台的介绍 1548687