已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

CUDU-Net: Collaborative up-sampling decoder U-Net for leaf vein segmentation

网(多面体) 分割 计算机科学 采样(信号处理) 人工智能 数学 计算机视觉 滤波器(信号处理) 几何学
作者
Wanqiang Cai,Bin Wang,Fanqing Zeng
出处
期刊:Digital Signal Processing [Elsevier]
卷期号:144: 104287-104287 被引量:5
标识
DOI:10.1016/j.dsp.2023.104287
摘要

Leaf vein is a common visual pattern in nature which provides potential clues for species identification, health evaluation, and variety selection of plants. However, as a critical step in leaf vein pattern analysis, segmenting vein from leaf image remains unaddressed due to its hierarchical curvilinear structure and busy background. In this study, we for the first time design a deep model which is tailored to address the segmentation of overall leaf vein structure. The proposed deep model, termed Collaborative Up-sampling Decoder U-Net (CUDU-Net), is an improved U-Net structure consisting of a fine-tuned ResNet extractor and a collaborative up-sampling decoder. The ResNet extractor utilizes residual module to explore high-dimensional features that are representative and abstract in the hidden layers of the network. The core of CUDU-Net is the collaborative up-sampling decoder which utilizes the complementarity of the bilinear-interpolation and deconvolution, to enhance the decoding capability of the model. The bilinear-interpolation can recovery key veins while the deconvolution actively learns to supplement more fine-grained features of the tertiary veins. In addition, we embed the strip pooling in the skip-connection to distill the vein-related semantics for performance boosting. Two leaf vein segmentation datasets, termed SoyVein500 and CottVein20, are built for model validation and generalization ability test. The extensive experimental results show that our proposed CUDU-Net outperforms the state-of-the-art methods in both segmentation accuracy and generalization ability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
激昂的煎蛋完成签到,获得积分10
1秒前
无花果应助捏个小雪团采纳,获得10
2秒前
zhixin发布了新的文献求助10
3秒前
3秒前
淡定自中发布了新的文献求助10
3秒前
无极微光应助PANGDA采纳,获得20
4秒前
南北发布了新的文献求助10
4秒前
小马甲应助ffff采纳,获得10
4秒前
清新的一笑完成签到,获得积分10
5秒前
5秒前
现代的擎苍完成签到,获得积分10
6秒前
6秒前
8秒前
谢大喵发布了新的文献求助10
9秒前
悦耳的真完成签到,获得积分10
9秒前
9秒前
aaa发布了新的文献求助10
10秒前
阔达的丹萱完成签到,获得积分10
10秒前
11秒前
11秒前
mufcyang发布了新的文献求助10
11秒前
howky完成签到,获得积分10
11秒前
12秒前
carl发布了新的文献求助10
12秒前
13秒前
cheng发布了新的文献求助10
13秒前
14秒前
传奇3应助大帅比采纳,获得10
14秒前
生动的悲发布了新的文献求助20
14秒前
ytnju发布了新的文献求助10
14秒前
14秒前
14秒前
酷炫萃发布了新的文献求助10
14秒前
丘比特应助忧虑的流沙采纳,获得10
14秒前
搜集达人应助bingyv采纳,获得10
14秒前
充电宝应助matteo采纳,获得10
14秒前
YJSSLBY完成签到 ,获得积分10
16秒前
Desperate完成签到,获得积分10
16秒前
搞怪莫茗发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644082
求助须知:如何正确求助?哪些是违规求助? 4762848
关于积分的说明 15023478
捐赠科研通 4802306
什么是DOI,文献DOI怎么找? 2567408
邀请新用户注册赠送积分活动 1525124
关于科研通互助平台的介绍 1484620