CUDU-Net: Collaborative up-sampling decoder U-Net for leaf vein segmentation

网(多面体) 分割 计算机科学 采样(信号处理) 人工智能 数学 计算机视觉 滤波器(信号处理) 几何学
作者
Wanqiang Cai,Bin Wang,Fanqing Zeng
出处
期刊:Digital Signal Processing [Elsevier BV]
卷期号:144: 104287-104287 被引量:5
标识
DOI:10.1016/j.dsp.2023.104287
摘要

Leaf vein is a common visual pattern in nature which provides potential clues for species identification, health evaluation, and variety selection of plants. However, as a critical step in leaf vein pattern analysis, segmenting vein from leaf image remains unaddressed due to its hierarchical curvilinear structure and busy background. In this study, we for the first time design a deep model which is tailored to address the segmentation of overall leaf vein structure. The proposed deep model, termed Collaborative Up-sampling Decoder U-Net (CUDU-Net), is an improved U-Net structure consisting of a fine-tuned ResNet extractor and a collaborative up-sampling decoder. The ResNet extractor utilizes residual module to explore high-dimensional features that are representative and abstract in the hidden layers of the network. The core of CUDU-Net is the collaborative up-sampling decoder which utilizes the complementarity of the bilinear-interpolation and deconvolution, to enhance the decoding capability of the model. The bilinear-interpolation can recovery key veins while the deconvolution actively learns to supplement more fine-grained features of the tertiary veins. In addition, we embed the strip pooling in the skip-connection to distill the vein-related semantics for performance boosting. Two leaf vein segmentation datasets, termed SoyVein500 and CottVein20, are built for model validation and generalization ability test. The extensive experimental results show that our proposed CUDU-Net outperforms the state-of-the-art methods in both segmentation accuracy and generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
幸福的龙猫完成签到 ,获得积分10
1秒前
熊巴巴完成签到 ,获得积分10
2秒前
WAM完成签到,获得积分10
2秒前
2秒前
2秒前
领导范儿应助哈哈采纳,获得10
4秒前
传奇3应助123Y采纳,获得10
5秒前
半岛发布了新的文献求助10
5秒前
搜集达人应助努力奋斗采纳,获得10
5秒前
5秒前
kingjames发布了新的文献求助10
5秒前
5秒前
ljl完成签到,获得积分10
6秒前
哈哈完成签到,获得积分20
7秒前
shoolarli发布了新的文献求助10
7秒前
8秒前
10秒前
堪萧完成签到,获得积分20
10秒前
哈哈发布了新的文献求助10
10秒前
上guanguan完成签到,获得积分10
12秒前
hhh发布了新的文献求助10
12秒前
Wnn完成签到,获得积分10
12秒前
13秒前
二冲完成签到,获得积分10
13秒前
WAM发布了新的文献求助10
13秒前
搜集达人应助kingjames采纳,获得30
13秒前
量子星尘发布了新的文献求助20
14秒前
14秒前
father完成签到 ,获得积分10
14秒前
14秒前
宗斐扬完成签到,获得积分10
15秒前
16秒前
16秒前
zambajia完成签到,获得积分10
17秒前
李爱国应助魔幻的向松采纳,获得10
17秒前
ff不吃芹菜完成签到,获得积分10
18秒前
18秒前
九月完成签到,获得积分10
18秒前
哈哈发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Technical Report No. 22 (Revised 2025): Process Simulation for Aseptically Filled Products 500
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5015093
求助须知:如何正确求助?哪些是违规求助? 4255734
关于积分的说明 13262335
捐赠科研通 4059408
什么是DOI,文献DOI怎么找? 2220244
邀请新用户注册赠送积分活动 1229566
关于科研通互助平台的介绍 1152134