甲醇
碳酸二甲酯
尿素
制氢
二氧化碳
化学
制浆造纸工业
氢
碳纤维
碳酸盐
温室气体
废物管理
有机化学
材料科学
工程类
生态学
复合数
复合材料
生物
作者
Chanon Bunsaksit,Rungthiwa Methaapanon,Palang Bumroongsakulsawat,Pornchai Bumroongsri,Pattaraporn Kim‐Lohsoontorn
标识
DOI:10.1016/j.jclepro.2023.139586
摘要
Dimethyl carbonate (DMC) is a green reactant that plays a crucial role in various industrial applications. In this study, the direct and indirect urea alcoholysis pathways for producing DMC from urea and methanol were simulated to assess their process performance and economic feasibility. The results showed that the highest energy consumption was in the separation of the azeotropic mixture of DMC and methanol. The indirect alcoholysis process was found to have lower energy consumption and lower carbon dioxide (CO2) emissions compared to conventional technology. The economic evaluation revealed that the indirect urea alcoholysis processes were economically feasible, with the price of methanol being the most significant factor affecting the economic performance. Despite these findings, the production of DMC from the urea and methanol pathways remains a challenge from an environmental perspective. Multiple sources of hydrogen for methanol production resulted in CO2 emissions ranging from 0.51 to 3.07 kg-CO2/kg-DMC. Although green hydrogen from electrolysis had the lowest CO2 emissions, it doubled the cost of DMC production over other hydrogens.
科研通智能强力驱动
Strongly Powered by AbleSci AI