Heterogeneous N-heterocyclic carbenes supported single-atom catalysts for nitrogen fixation: A combined density functional theory and machine learning study

催化作用 密度泛函理论 化学 卡宾 过渡金属 氮气 选择性 计算化学 有机化学
作者
Jingchao Sun,Dian Zheng,Fei Deng,Sitong Liu,Yunhao Xie,Ying Liu,Jing Xu,Wei Liu
出处
期刊:Applied Surface Science [Elsevier]
卷期号:644: 158802-158802 被引量:10
标识
DOI:10.1016/j.apsusc.2023.158802
摘要

Electrocatalytic nitrogen reduction reaction (NRR) has emerged as a sustainable and eco-friendly alternative for ammonia production at ambient conditions. Exploring highly efficient and selective electrocatalysts for NRR continues to gain significant attention, but remains a challenge. In this work, we conducted a series of single-atom catalysts (SACs) by embedding 29 kinds of transition metal (TM) atoms on the two-dimensional heterogeneous N-heterocyclic carbene, and systematically investigated their catalytic performance for NRR using density functional theory, high-throughput screening, and machine learning. Two promising candidates (TM = Mn and Ta) with high catalytic activity and selectivity were identified, with limiting potentials of - 0.51 and - 0.53 V, respectively. Moreover, considering solvation effects, the limiting potential for Mn was further reduced to -0.43 V. Machine learning (ML) analysis revealed that the adsorption energy of N2 emerged as an efficient descriptor for NRR activity, and transition metal atomic Mendeleev number (Nm), the molar volume of TM atoms (Vm) and the 1st ionization energy of TM atoms (Im) were intrinsic to the difference in NRR performance of these SACs. Our findings demonstrate a novel class of efficient SACs based on heterogeneous N-heterocyclic carbene, offering valuable insights for further design of NRR electrocatalysts with exceptional catalytic performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
霸气的思柔完成签到,获得积分10
1秒前
所所应助X.-CHEN采纳,获得10
2秒前
3秒前
3秒前
秋海棠发布了新的文献求助10
3秒前
3秒前
Felix发布了新的文献求助10
7秒前
7秒前
Fearless完成签到,获得积分10
7秒前
9秒前
在水一方应助秋海棠采纳,获得10
10秒前
slim完成签到,获得积分10
10秒前
11秒前
FashionBoy应助英俊小美采纳,获得10
11秒前
Promise完成签到 ,获得积分10
13秒前
Felix完成签到,获得积分10
13秒前
13秒前
老实皮皮虾完成签到,获得积分10
13秒前
13秒前
王富贵完成签到,获得积分20
13秒前
元谷雪发布了新的文献求助10
14秒前
爆米花应助看风景的小熊采纳,获得10
16秒前
17秒前
路宝发布了新的文献求助10
18秒前
peterfu发布了新的文献求助10
20秒前
Lucas应助利多可欣采纳,获得30
21秒前
CipherSage应助ff采纳,获得10
21秒前
科研通AI2S应助王子星痕采纳,获得10
22秒前
路宝完成签到,获得积分10
23秒前
Ava应助九九采纳,获得10
24秒前
shangxinyu完成签到,获得积分10
25秒前
al完成签到 ,获得积分10
26秒前
wbh完成签到 ,获得积分10
26秒前
yar应助科研通管家采纳,获得10
26秒前
酷波er应助科研通管家采纳,获得20
26秒前
CipherSage应助科研通管家采纳,获得10
26秒前
三黑猫应助科研通管家采纳,获得10
26秒前
JamesPei应助科研通管家采纳,获得10
27秒前
yar应助科研通管家采纳,获得10
27秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312139
求助须知:如何正确求助?哪些是违规求助? 2944769
关于积分的说明 8521299
捐赠科研通 2620463
什么是DOI,文献DOI怎么找? 1432849
科研通“疑难数据库(出版商)”最低求助积分说明 664797
邀请新用户注册赠送积分活动 650115