Simulation of a microfluidic directional driving device with sharp-edge structure excited with acoustic wave

GSM演进的增强数据速率 频道(广播) 材料科学 声学 振动 微流控 光学 机械 物理 电气工程 纳米技术 工程类 电信
作者
Bendong Liu,Meimei Qiao,Shaohua Zhang,Jiahui Yang
出处
期刊:Modern Physics Letters B [World Scientific]
卷期号:38 (12)
标识
DOI:10.1142/s0217984924500672
摘要

The microfluidic device with sharp-edge structures excited with acoustic wave has the characteristics of simple structure, easy manufacture, good bio-compatibility and fast response and has a good application prospect. In order to make full use of its driving characteristics, a scheme of microfluidic driving device with sharp-edge structures is designed in this paper, and the effect of structural parameters on its driving performance is analyzed with the finite element software COMSOL5.6. The model of sharp-edge structure in micro channel is established, and the relationship between the vibration mode and the resonant frequency and the inclined angle of sharp-edge structure is simulated. With the increase of the inclined angle of the sharp-edge structure, its resonant frequency with optimal vibration mode increases. The effects of the micro channel width, the inclined angle between the sharp-edge structure and the micro channel, and the distance between the two sharp-edge structures on the driving velocity are analyzed with the optimal vibration mode. The results show that the parameters of the sharp-edge structure and the micro channel can significantly affect the micro flow field and the driving effect of the micro fluid. As the width of the micro channel, the inclined angle between the sharp-edge structure and the micro channel, and the distance between the two sharp-edge structures decrease, the flow field in the micro channel increases. When the micro channel width is 500[Formula: see text][Formula: see text]m, the inclined angle between the sharp-edge structure and the micro channel is 45 ∘ , and the distance between the two pairs of sharp-edge structures is 150[Formula: see text][Formula: see text]m, the microfluidic driving effect is the best, the maximum flow rate is 458.24[Formula: see text][Formula: see text]m/s and the velocity fluctuation transverse along the micro channel is the smallest.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
doctorbba发布了新的文献求助10
刚刚
田様应助傻傻的修洁采纳,获得10
刚刚
下文献的蜉蝣完成签到 ,获得积分10
1秒前
a1313发布了新的文献求助10
1秒前
yy发布了新的文献求助10
2秒前
2秒前
科研通AI6应助草莓采纳,获得10
3秒前
一站到底完成签到 ,获得积分10
3秒前
3秒前
3秒前
5秒前
莲花庙里吃苹果完成签到,获得积分20
8秒前
zhoushishan发布了新的文献求助10
9秒前
9秒前
9秒前
jyylrl完成签到,获得积分10
10秒前
10秒前
风清扬发布了新的文献求助30
12秒前
JamesPei应助忧伤的向日葵采纳,获得30
12秒前
善学以致用应助yy采纳,获得10
13秒前
13秒前
13秒前
如风发布了新的文献求助10
13秒前
13秒前
15秒前
15秒前
16秒前
16秒前
17秒前
18秒前
SuperYing发布了新的文献求助10
19秒前
19秒前
20秒前
Hello应助刘清河采纳,获得10
21秒前
冰冰完成签到 ,获得积分10
21秒前
可爱多发布了新的文献求助10
22秒前
嘟嘟完成签到 ,获得积分10
23秒前
zsy发布了新的文献求助10
25秒前
25秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
The polyurethanes book 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610252
求助须知:如何正确求助?哪些是违规求助? 4694737
关于积分的说明 14884005
捐赠科研通 4721516
什么是DOI,文献DOI怎么找? 2545036
邀请新用户注册赠送积分活动 1509927
关于科研通互助平台的介绍 1473039