Machine learning and deep learning predictive models for long-term prognosis in patients with chronic obstructive pulmonary disease: a systematic review and meta-analysis

医学 检查表 人工智能 慢性阻塞性肺病 机器学习 接收机工作特性 科克伦图书馆 荟萃分析 系统回顾 梅德林 恶化 深度学习 内科学 物理疗法 重症监护医学 计算机科学 心理学 政治学 法学 认知心理学
作者
Luke Smith,Lauren Oakden‐Rayner,Alix Bird,Minyan Zeng,Minh‐Son To,Sutapa Mukherjee,Lyle J. Palmer
出处
期刊:The Lancet Digital Health [Elsevier]
卷期号:5 (12): e872-e881 被引量:25
标识
DOI:10.1016/s2589-7500(23)00177-2
摘要

BackgroundMachine learning and deep learning models have been increasingly used to predict long-term disease progression in patients with chronic obstructive pulmonary disease (COPD). We aimed to summarise the performance of such prognostic models for COPD, compare their relative performances, and identify key research gaps.MethodsWe conducted a systematic review and meta-analysis to compare the performance of machine learning and deep learning prognostic models and identify pathways for future research. We searched PubMed, Embase, the Cochrane Library, ProQuest, Scopus, and Web of Science from database inception to April 6, 2023, for studies in English using machine learning or deep learning to predict patient outcomes at least 6 months after initial clinical presentation in those with COPD. We included studies comprising human adults aged 18–90 years and allowed for any input modalities. We reported area under the receiver operator characteristic curve (AUC) with 95% CI for predictions of mortality, exacerbation, and decline in forced expiratory volume in 1 s (FEV1). We reported the degree of interstudy heterogeneity using Cochran's Q test (significant heterogeneity was defined as p≤0·10 or I2>50%). Reporting quality was assessed using the TRIPOD checklist and a risk-of-bias assessment was done using the PROBAST checklist. This study was registered with PROSPERO (CRD42022323052).FindingsWe identified 3620 studies in the initial search. 18 studies were eligible, and, of these, 12 used conventional machine learning and six used deep learning models. Seven models analysed exacerbation risk, with only six reporting AUC and 95% CI on internal validation datasets (pooled AUC 0·77 [95% CI 0·69–0·85]) and there was significant heterogeneity (I2 97%, p<0·0001). 11 models analysed mortality risk, with only six reporting AUC and 95% CI on internal validation datasets (pooled AUC 0·77 [95% CI 0·74–0·80]) with significant degrees of heterogeneity (I2 60%, p=0·027). Two studies assessed decline in lung function and were unable to be pooled. Machine learning and deep learning models did not show significant improvement over pre-existing disease severity scores in predicting exacerbations (p=0·24). Three studies directly compared machine learning models against pre-existing severity scores for predicting mortality and pooled performance did not differ (p=0·57). Of the five studies that performed external validation, performance was worse than or equal to regression models. Incorrect handling of missing data, not reporting model uncertainty, and use of datasets that were too small relative to the number of predictive features included provided the largest risks of bias.InterpretationThere is limited evidence that conventional machine learning and deep learning prognostic models demonstrate superior performance to pre-existing disease severity scores. More rigorous adherence to reporting guidelines would reduce the risk of bias in future studies and aid study reproducibility.FundingNone.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助水水水水采纳,获得10
2秒前
心想事成完成签到 ,获得积分10
9秒前
13秒前
hyl-tcm完成签到 ,获得积分10
20秒前
水水水水发布了新的文献求助10
20秒前
奋斗的妙海完成签到 ,获得积分0
21秒前
77完成签到 ,获得积分10
23秒前
zhaoli完成签到 ,获得积分10
23秒前
代扁扁完成签到 ,获得积分10
26秒前
Hello应助一个小胖子采纳,获得10
26秒前
28秒前
31秒前
林好人发布了新的文献求助10
33秒前
恋空完成签到 ,获得积分10
34秒前
fawr完成签到 ,获得积分10
36秒前
TOUHOUU完成签到 ,获得积分10
37秒前
小冰发布了新的文献求助10
39秒前
jun完成签到 ,获得积分10
40秒前
qqqqq完成签到,获得积分10
43秒前
上官若男应助西兰采纳,获得10
49秒前
小冰完成签到,获得积分10
54秒前
naomic完成签到,获得积分10
55秒前
老西瓜完成签到,获得积分10
55秒前
传奇3应助33采纳,获得10
57秒前
稻子完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
衣蝉完成签到 ,获得积分10
1分钟前
Kevin完成签到,获得积分10
1分钟前
博林大师完成签到,获得积分0
1分钟前
执着的忆雪完成签到 ,获得积分10
1分钟前
33发布了新的文献求助10
1分钟前
浮云完成签到 ,获得积分10
1分钟前
1分钟前
有魅力荟发布了新的文献求助10
1分钟前
程程发布了新的文献求助10
1分钟前
33完成签到,获得积分20
1分钟前
Nola完成签到 ,获得积分10
1分钟前
tmobiusx完成签到,获得积分10
1分钟前
雪山飞龙发布了新的文献求助30
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555826
求助须知:如何正确求助?哪些是违规求助? 3131451
关于积分的说明 9391147
捐赠科研通 2831132
什么是DOI,文献DOI怎么找? 1556396
邀请新用户注册赠送积分活动 726516
科研通“疑难数据库(出版商)”最低求助积分说明 715890