R2Net: Efficient and flexible diffeomorphic image registration using Lipschitz continuous residual networks

微分同胚 人工智能 计算机科学 参数化复杂度 残余物 图像配准 深度学习 计算机视觉 图像(数学) 李普希茨连续性 运动学 算法 数学 数学分析 物理 经典力学
作者
Ankita Joshi,Yi Hong
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:89: 102917-102917 被引量:2
标识
DOI:10.1016/j.media.2023.102917
摘要

Classical diffeomorphic image registration methods, while being accurate, face the challenges of high computational costs. Deep learning based approaches provide a fast alternative to address these issues; however, most existing deep solutions either lose the good property of diffeomorphism or have limited flexibility to capture large deformations, under the assumption that deformations are driven by stationary velocity fields (SVFs). Also, the adopted squaring and scaling technique for integrating SVFs is time- and memory-consuming, hindering deep methods from handling large image volumes. In this paper, we present an unsupervised diffeomorphic image registration framework, which uses deep residual networks (ResNets) as numerical approximations of the underlying continuous diffeomorphic setting governed by ordinary differential equations, which is parameterized by either SVFs or time-varying (non-stationary) velocity fields. This flexible parameterization in our Residual Registration Network (R2Net) not only provides the model’s ability to capture large deformation but also reduces the time and memory cost when integrating velocity fields for deformation generation. Also, we introduce a Lipschitz continuity constraint into the ResNet block to help achieve diffeomorphic deformations. To enhance the ability of our model for handling images with large volume sizes, we employ a hierarchical extension with a multi-phase learning strategy to solve the image registration task in a coarse-to-fine fashion. We demonstrate our models on four 3D image registration tasks with a wide range of anatomies, including brain MRIs, cine cardiac MRIs, and lung CT scans. Compared to classical methods SyN and diffeomorphic VoxelMorph, our models achieve comparable or better registration accuracy with much smoother deformations. Our source code is available online at https://github.com/ankitajoshi15/R2Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
ty完成签到,获得积分20
1秒前
SYLH应助冷艳笑卉采纳,获得10
1秒前
务实凡灵完成签到,获得积分10
1秒前
风中怜寒发布了新的文献求助10
1秒前
2秒前
害羞无春发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
牛牛发布了新的文献求助10
3秒前
123发布了新的文献求助10
4秒前
小蘑菇应助研友_LwbeX8采纳,获得10
4秒前
科研通AI2S应助ymxlcfc采纳,获得10
4秒前
4秒前
mirayq发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
6秒前
chen发布了新的文献求助10
6秒前
zzz发布了新的文献求助30
7秒前
香蕉觅云应助优秀星星采纳,获得10
7秒前
mawenxing完成签到,获得积分10
7秒前
英俊的铭应助YY采纳,获得10
8秒前
青衣北风发布了新的文献求助10
8秒前
乏味发布了新的文献求助10
8秒前
CAOHOU应助1234采纳,获得10
8秒前
smin发布了新的文献求助10
8秒前
过时的维度完成签到,获得积分10
9秒前
1111应助178181采纳,获得10
9秒前
10秒前
blingl发布了新的文献求助20
11秒前
Jalynn2044完成签到 ,获得积分10
11秒前
12秒前
LDDDGR发布了新的文献求助10
12秒前
彭于晏应助司徒代云采纳,获得10
12秒前
陈漂亮发布了新的文献求助30
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979392
求助须知:如何正确求助?哪些是违规求助? 3523308
关于积分的说明 11217159
捐赠科研通 3260797
什么是DOI,文献DOI怎么找? 1800211
邀请新用户注册赠送积分活动 878960
科研通“疑难数据库(出版商)”最低求助积分说明 807113