亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

R2Net: Efficient and flexible diffeomorphic image registration using Lipschitz continuous residual networks

微分同胚 人工智能 计算机科学 参数化复杂度 残余物 图像配准 深度学习 计算机视觉 图像(数学) 李普希茨连续性 运动学 算法 数学 数学分析 物理 经典力学
作者
Ankita Joshi,Yi Hong
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:89: 102917-102917 被引量:2
标识
DOI:10.1016/j.media.2023.102917
摘要

Classical diffeomorphic image registration methods, while being accurate, face the challenges of high computational costs. Deep learning based approaches provide a fast alternative to address these issues; however, most existing deep solutions either lose the good property of diffeomorphism or have limited flexibility to capture large deformations, under the assumption that deformations are driven by stationary velocity fields (SVFs). Also, the adopted squaring and scaling technique for integrating SVFs is time- and memory-consuming, hindering deep methods from handling large image volumes. In this paper, we present an unsupervised diffeomorphic image registration framework, which uses deep residual networks (ResNets) as numerical approximations of the underlying continuous diffeomorphic setting governed by ordinary differential equations, which is parameterized by either SVFs or time-varying (non-stationary) velocity fields. This flexible parameterization in our Residual Registration Network (R2Net) not only provides the model’s ability to capture large deformation but also reduces the time and memory cost when integrating velocity fields for deformation generation. Also, we introduce a Lipschitz continuity constraint into the ResNet block to help achieve diffeomorphic deformations. To enhance the ability of our model for handling images with large volume sizes, we employ a hierarchical extension with a multi-phase learning strategy to solve the image registration task in a coarse-to-fine fashion. We demonstrate our models on four 3D image registration tasks with a wide range of anatomies, including brain MRIs, cine cardiac MRIs, and lung CT scans. Compared to classical methods SyN and diffeomorphic VoxelMorph, our models achieve comparable or better registration accuracy with much smoother deformations. Our source code is available online at https://github.com/ankitajoshi15/R2Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助秋刀鱼不过期采纳,获得10
13秒前
36秒前
44秒前
ABC发布了新的文献求助10
48秒前
49秒前
1分钟前
1分钟前
1分钟前
大爷醒醒啊完成签到,获得积分10
1分钟前
扬大小汤发布了新的文献求助10
1分钟前
Lucas应助扬大小汤采纳,获得10
1分钟前
扬大小汤完成签到,获得积分10
1分钟前
SDNUDRUG完成签到,获得积分10
1分钟前
脑洞疼应助科研通管家采纳,获得30
1分钟前
1分钟前
2分钟前
2分钟前
小伍完成签到,获得积分10
2分钟前
2分钟前
小伍发布了新的文献求助30
2分钟前
2分钟前
qq完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
WerWu完成签到,获得积分10
3分钟前
华仔应助科研通管家采纳,获得10
3分钟前
爆米花应助科研通管家采纳,获得10
3分钟前
汉堡包应助乐生采纳,获得50
3分钟前
乐乐应助泡面小猪采纳,获得10
4分钟前
愤怒的豆腐人完成签到,获得积分10
4分钟前
灵溪完成签到 ,获得积分10
4分钟前
我有乖乖吃饭完成签到,获得积分20
4分钟前
小蘑菇应助我有乖乖吃饭采纳,获得60
4分钟前
4分钟前
kk发布了新的文献求助10
4分钟前
kk完成签到,获得积分10
4分钟前
oleskarabach完成签到,获得积分20
4分钟前
5分钟前
泡面小猪发布了新的文献求助10
5分钟前
5分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137011
求助须知:如何正确求助?哪些是违规求助? 2787960
关于积分的说明 7784100
捐赠科研通 2444041
什么是DOI,文献DOI怎么找? 1299643
科研通“疑难数据库(出版商)”最低求助积分说明 625497
版权声明 600989