R2Net: Efficient and flexible diffeomorphic image registration using Lipschitz continuous residual networks

微分同胚 人工智能 计算机科学 参数化复杂度 残余物 图像配准 深度学习 计算机视觉 图像(数学) 李普希茨连续性 运动学 算法 数学 数学分析 物理 经典力学
作者
Ankita Joshi,Yi Hong
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:89: 102917-102917 被引量:26
标识
DOI:10.1016/j.media.2023.102917
摘要

Classical diffeomorphic image registration methods, while being accurate, face the challenges of high computational costs. Deep learning based approaches provide a fast alternative to address these issues; however, most existing deep solutions either lose the good property of diffeomorphism or have limited flexibility to capture large deformations, under the assumption that deformations are driven by stationary velocity fields (SVFs). Also, the adopted squaring and scaling technique for integrating SVFs is time- and memory-consuming, hindering deep methods from handling large image volumes. In this paper, we present an unsupervised diffeomorphic image registration framework, which uses deep residual networks (ResNets) as numerical approximations of the underlying continuous diffeomorphic setting governed by ordinary differential equations, which is parameterized by either SVFs or time-varying (non-stationary) velocity fields. This flexible parameterization in our Residual Registration Network (R2Net) not only provides the model’s ability to capture large deformation but also reduces the time and memory cost when integrating velocity fields for deformation generation. Also, we introduce a Lipschitz continuity constraint into the ResNet block to help achieve diffeomorphic deformations. To enhance the ability of our model for handling images with large volume sizes, we employ a hierarchical extension with a multi-phase learning strategy to solve the image registration task in a coarse-to-fine fashion. We demonstrate our models on four 3D image registration tasks with a wide range of anatomies, including brain MRIs, cine cardiac MRIs, and lung CT scans. Compared to classical methods SyN and diffeomorphic VoxelMorph, our models achieve comparable or better registration accuracy with much smoother deformations. Our source code is available online at https://github.com/ankitajoshi15/R2Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风暴之灵发布了新的文献求助20
1秒前
QQ完成签到,获得积分10
1秒前
lln90完成签到,获得积分10
1秒前
zdzdz00完成签到,获得积分20
1秒前
黄先生发布了新的文献求助10
2秒前
2秒前
Izzy发布了新的文献求助10
2秒前
强健的雅绿完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
wsy完成签到,获得积分10
3秒前
xue完成签到,获得积分10
3秒前
zdzdz00发布了新的文献求助10
4秒前
QQqq完成签到,获得积分10
4秒前
momi发布了新的文献求助10
4秒前
CipherSage应助清秀寇采纳,获得10
4秒前
冉冉完成签到 ,获得积分0
4秒前
大意的星星完成签到,获得积分10
5秒前
池鱼思故渊完成签到,获得积分10
5秒前
5秒前
小雨完成签到 ,获得积分10
5秒前
meikoo完成签到 ,获得积分10
6秒前
6秒前
lln90发布了新的文献求助10
6秒前
Febrine0502完成签到,获得积分10
7秒前
8秒前
852应助kkkk采纳,获得10
9秒前
9秒前
结实雪卉完成签到,获得积分10
9秒前
9秒前
9秒前
Cloris完成签到,获得积分10
10秒前
星辰大海应助跳跃盼波采纳,获得10
10秒前
meddy完成签到,获得积分10
10秒前
Stone完成签到,获得积分10
11秒前
悲凉的莫言完成签到,获得积分20
11秒前
李健的粉丝团团长应助JIE采纳,获得10
11秒前
11秒前
wayneturner发布了新的文献求助10
11秒前
小Z发布了新的文献求助10
11秒前
怕黑的妍完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573946
求助须知:如何正确求助?哪些是违规求助? 4660289
关于积分的说明 14728668
捐赠科研通 4600067
什么是DOI,文献DOI怎么找? 2524676
邀请新用户注册赠送积分活动 1495011
关于科研通互助平台的介绍 1465006