亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Application of Artificial Intelligence in Prediction of Wellbore Stability Using Well Logging and Drilling Data

支持向量机 人工神经网络 理论(学习稳定性) 钻井液 井筒 钻探 非线性系统 计算机科学 石油工程 工程类 人工智能 机器学习 机械工程 量子力学 物理
作者
Juntao Wu,Wei Liu,Hai Lin,Hailong Liu,Chengyong Peng
出处
期刊:50th U.S. Rock Mechanics/Geomechanics Symposium
标识
DOI:10.56952/arma-2023-0598
摘要

ABSTRACT Wellbore instability is one of the most critical challenges during drilling, often manifested as wellbore collapse, shrinkage, falling rocks, and formation fracturing, which may result in complex problems such as pipe sticking, high torque, mud loss, thus impeding the drilling progress and increasing the cost of the drilling operation. Conventional wellbore stability prediction relies on some deterministic physical models, involving some empirical coefficients which are difficult to determine and often dependent on field experience. In addition, some complex factors, such as natural fractures, cannot be explicitly and quantitatively characterized in existing wellbore stability prediction models. Artificial intelligence technique has shown unique advantages in nonlinear issues. The artificial intelligence technique is used to predict wellbore stability in this study, including artificial neural networks (ANNs) and support vector machine (SVM). The logging data and drilling data were collected from the field. According to the correlation analysis between influencing factors and wellbore enlargement rate, 16 parameters were extracted, such as mud density, formation density porosity, acoustic interval transit time, weight on bit as the input data of the models, and wellbore enlargement rate as output. Both SVM and ANNs models have exceptional performance in predicting wellbore stability. When the kernel of the SVM model is Linear, predictions perform optimally. In the ANNs model prediction results, the result performs optimally when the total number of neurons is 1024 in the hidden layer. Overall, ANNs model performs better than SVM model with a coefficient of determination (R2) of 0.991, therefore it is recommended to apply ANNs to predict wellbore stability. The present analysis supplies knowledge that can be used to predict wellbore stability problems before drilling, optimize drilling parameters, and reduce drilling accidents and costs. INTRODUCTION Wellbore instability refer to a series of responses resulting from mechanical, chemical and other effects of the rock around the wellbore. Wellbore instability is one of the most critical challenges during drilling, often manifested as wellbore collapse, shrinkage, falling rocks, and formation fracturing, which may result in complex problems such as pipe sticking, high torque, mud loss, thus impeding the drilling progress and increasing the cost of the drilling operation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
李健的粉丝团团长应助Czl采纳,获得10
14秒前
16秒前
瘪良科研发布了新的文献求助10
23秒前
Orange应助bird采纳,获得10
24秒前
26秒前
rrr完成签到 ,获得积分10
29秒前
31秒前
32秒前
瘪良科研完成签到,获得积分10
38秒前
Czl发布了新的文献求助10
38秒前
史前巨怪完成签到,获得积分0
55秒前
56秒前
57秒前
果酱完成签到,获得积分10
1分钟前
称心的高丽完成签到 ,获得积分10
1分钟前
树脂小柴发布了新的文献求助10
1分钟前
1分钟前
Sandy发布了新的文献求助10
1分钟前
树脂小柴完成签到,获得积分10
1分钟前
1分钟前
蘇q完成签到 ,获得积分10
1分钟前
2分钟前
bkagyin应助科研通管家采纳,获得10
2分钟前
CodeCraft应助科研通管家采纳,获得10
2分钟前
2分钟前
yiyayaxiaojie发布了新的文献求助10
2分钟前
孤独蘑菇完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
舒心的朝雪完成签到 ,获得积分10
2分钟前
漠然完成签到,获得积分10
2分钟前
2分钟前
zbj662完成签到 ,获得积分10
2分钟前
大包鸡完成签到 ,获得积分10
3分钟前
BowieHuang应助Pk采纳,获得10
3分钟前
蜜HHH完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723535
求助须知:如何正确求助?哪些是违规求助? 5278836
关于积分的说明 15298864
捐赠科研通 4871973
什么是DOI,文献DOI怎么找? 2616415
邀请新用户注册赠送积分活动 1566241
关于科研通互助平台的介绍 1523131