Application of Artificial Intelligence in Prediction of Wellbore Stability Using Well Logging and Drilling Data

支持向量机 人工神经网络 理论(学习稳定性) 钻井液 井筒 钻探 非线性系统 计算机科学 石油工程 工程类 人工智能 机器学习 机械工程 物理 量子力学
作者
Juntao Wu,Wei Liu,Hai Lin,Hailong Liu,Chengyong Peng
出处
期刊:50th U.S. Rock Mechanics/Geomechanics Symposium
标识
DOI:10.56952/arma-2023-0598
摘要

ABSTRACT Wellbore instability is one of the most critical challenges during drilling, often manifested as wellbore collapse, shrinkage, falling rocks, and formation fracturing, which may result in complex problems such as pipe sticking, high torque, mud loss, thus impeding the drilling progress and increasing the cost of the drilling operation. Conventional wellbore stability prediction relies on some deterministic physical models, involving some empirical coefficients which are difficult to determine and often dependent on field experience. In addition, some complex factors, such as natural fractures, cannot be explicitly and quantitatively characterized in existing wellbore stability prediction models. Artificial intelligence technique has shown unique advantages in nonlinear issues. The artificial intelligence technique is used to predict wellbore stability in this study, including artificial neural networks (ANNs) and support vector machine (SVM). The logging data and drilling data were collected from the field. According to the correlation analysis between influencing factors and wellbore enlargement rate, 16 parameters were extracted, such as mud density, formation density porosity, acoustic interval transit time, weight on bit as the input data of the models, and wellbore enlargement rate as output. Both SVM and ANNs models have exceptional performance in predicting wellbore stability. When the kernel of the SVM model is Linear, predictions perform optimally. In the ANNs model prediction results, the result performs optimally when the total number of neurons is 1024 in the hidden layer. Overall, ANNs model performs better than SVM model with a coefficient of determination (R2) of 0.991, therefore it is recommended to apply ANNs to predict wellbore stability. The present analysis supplies knowledge that can be used to predict wellbore stability problems before drilling, optimize drilling parameters, and reduce drilling accidents and costs. INTRODUCTION Wellbore instability refer to a series of responses resulting from mechanical, chemical and other effects of the rock around the wellbore. Wellbore instability is one of the most critical challenges during drilling, often manifested as wellbore collapse, shrinkage, falling rocks, and formation fracturing, which may result in complex problems such as pipe sticking, high torque, mud loss, thus impeding the drilling progress and increasing the cost of the drilling operation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liyan完成签到,获得积分10
1秒前
l昱l完成签到 ,获得积分10
1秒前
NexusExplorer应助张然采纳,获得10
1秒前
1秒前
93发布了新的文献求助10
2秒前
tobino1完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
久念发布了新的文献求助10
3秒前
zz发布了新的文献求助10
3秒前
Littlerain~完成签到,获得积分10
3秒前
零零完成签到,获得积分10
4秒前
4秒前
4秒前
王忘汪发布了新的文献求助10
4秒前
清秀龙猫完成签到,获得积分10
4秒前
4秒前
机灵的衬衫完成签到 ,获得积分10
5秒前
5秒前
6秒前
安德鲁完成签到,获得积分10
6秒前
浮游应助敏感的半梅采纳,获得10
6秒前
史萌发布了新的文献求助10
6秒前
6秒前
Cunese完成签到,获得积分10
7秒前
7秒前
为你等候发布了新的文献求助10
7秒前
xxxzzz发布了新的文献求助10
8秒前
机灵念蕾发布了新的文献求助10
8秒前
清秀龙猫发布了新的文献求助10
8秒前
独孤刘完成签到,获得积分10
9秒前
chi2发布了新的文献求助10
9秒前
桐桐应助久念采纳,获得10
9秒前
HHHHTTTT完成签到,获得积分10
9秒前
GH发布了新的文献求助10
10秒前
11秒前
聪明爱迪生完成签到,获得积分10
11秒前
唐褚完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5316202
求助须知:如何正确求助?哪些是违规求助? 4458692
关于积分的说明 13871829
捐赠科研通 4348587
什么是DOI,文献DOI怎么找? 2388260
邀请新用户注册赠送积分活动 1382364
关于科研通互助平台的介绍 1351755