Application of Artificial Intelligence in Prediction of Wellbore Stability Using Well Logging and Drilling Data

支持向量机 人工神经网络 理论(学习稳定性) 钻井液 井筒 钻探 非线性系统 计算机科学 石油工程 工程类 人工智能 机器学习 机械工程 物理 量子力学
作者
Juntao Wu,Wei Liu,Hai Lin,Hailong Liu,Chengyong Peng
出处
期刊:50th U.S. Rock Mechanics/Geomechanics Symposium
标识
DOI:10.56952/arma-2023-0598
摘要

ABSTRACT Wellbore instability is one of the most critical challenges during drilling, often manifested as wellbore collapse, shrinkage, falling rocks, and formation fracturing, which may result in complex problems such as pipe sticking, high torque, mud loss, thus impeding the drilling progress and increasing the cost of the drilling operation. Conventional wellbore stability prediction relies on some deterministic physical models, involving some empirical coefficients which are difficult to determine and often dependent on field experience. In addition, some complex factors, such as natural fractures, cannot be explicitly and quantitatively characterized in existing wellbore stability prediction models. Artificial intelligence technique has shown unique advantages in nonlinear issues. The artificial intelligence technique is used to predict wellbore stability in this study, including artificial neural networks (ANNs) and support vector machine (SVM). The logging data and drilling data were collected from the field. According to the correlation analysis between influencing factors and wellbore enlargement rate, 16 parameters were extracted, such as mud density, formation density porosity, acoustic interval transit time, weight on bit as the input data of the models, and wellbore enlargement rate as output. Both SVM and ANNs models have exceptional performance in predicting wellbore stability. When the kernel of the SVM model is Linear, predictions perform optimally. In the ANNs model prediction results, the result performs optimally when the total number of neurons is 1024 in the hidden layer. Overall, ANNs model performs better than SVM model with a coefficient of determination (R2) of 0.991, therefore it is recommended to apply ANNs to predict wellbore stability. The present analysis supplies knowledge that can be used to predict wellbore stability problems before drilling, optimize drilling parameters, and reduce drilling accidents and costs. INTRODUCTION Wellbore instability refer to a series of responses resulting from mechanical, chemical and other effects of the rock around the wellbore. Wellbore instability is one of the most critical challenges during drilling, often manifested as wellbore collapse, shrinkage, falling rocks, and formation fracturing, which may result in complex problems such as pipe sticking, high torque, mud loss, thus impeding the drilling progress and increasing the cost of the drilling operation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈晨完成签到 ,获得积分10
1秒前
田様应助大气的寇采纳,获得10
1秒前
dynamoo发布了新的文献求助10
2秒前
共享精神应助zain采纳,获得10
3秒前
3秒前
3秒前
4秒前
英姑应助tlotw41采纳,获得10
4秒前
言言发布了新的文献求助10
4秒前
4秒前
tangrulong发布了新的文献求助10
5秒前
gooooood发布了新的文献求助10
5秒前
科研通AI6应助王彩妮采纳,获得10
5秒前
zgaolei完成签到,获得积分10
6秒前
7秒前
kiya发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
壮壮不爱吃肉完成签到,获得积分10
9秒前
9秒前
9秒前
wzx完成签到,获得积分10
9秒前
www发布了新的文献求助10
9秒前
Lin_L发布了新的文献求助10
10秒前
10秒前
fly_sharp发布了新的文献求助10
10秒前
Lingo发布了新的文献求助10
11秒前
11秒前
2muchlike完成签到 ,获得积分10
11秒前
NIJJJJJIA完成签到 ,获得积分10
12秒前
江南之南发布了新的文献求助10
13秒前
上官若男应助li采纳,获得10
13秒前
ccm应助YQQ采纳,获得10
13秒前
14秒前
Jasper应助Moriaty采纳,获得10
14秒前
15秒前
水墨橙子发布了新的文献求助10
15秒前
swh发布了新的文献求助10
15秒前
健康的老六完成签到,获得积分10
16秒前
Lingo完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5520926
求助须知:如何正确求助?哪些是违规求助? 4612521
关于积分的说明 14533938
捐赠科研通 4550069
什么是DOI,文献DOI怎么找? 2493369
邀请新用户注册赠送积分活动 1474567
关于科研通互助平台的介绍 1446106