清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Application of Artificial Intelligence in Prediction of Wellbore Stability Using Well Logging and Drilling Data

支持向量机 人工神经网络 理论(学习稳定性) 钻井液 井筒 钻探 非线性系统 计算机科学 石油工程 工程类 人工智能 机器学习 机械工程 物理 量子力学
作者
Juntao Wu,Wei Liu,Hai Lin,Hailong Liu,Chengyong Peng
出处
期刊:50th U.S. Rock Mechanics/Geomechanics Symposium
标识
DOI:10.56952/arma-2023-0598
摘要

ABSTRACT Wellbore instability is one of the most critical challenges during drilling, often manifested as wellbore collapse, shrinkage, falling rocks, and formation fracturing, which may result in complex problems such as pipe sticking, high torque, mud loss, thus impeding the drilling progress and increasing the cost of the drilling operation. Conventional wellbore stability prediction relies on some deterministic physical models, involving some empirical coefficients which are difficult to determine and often dependent on field experience. In addition, some complex factors, such as natural fractures, cannot be explicitly and quantitatively characterized in existing wellbore stability prediction models. Artificial intelligence technique has shown unique advantages in nonlinear issues. The artificial intelligence technique is used to predict wellbore stability in this study, including artificial neural networks (ANNs) and support vector machine (SVM). The logging data and drilling data were collected from the field. According to the correlation analysis between influencing factors and wellbore enlargement rate, 16 parameters were extracted, such as mud density, formation density porosity, acoustic interval transit time, weight on bit as the input data of the models, and wellbore enlargement rate as output. Both SVM and ANNs models have exceptional performance in predicting wellbore stability. When the kernel of the SVM model is Linear, predictions perform optimally. In the ANNs model prediction results, the result performs optimally when the total number of neurons is 1024 in the hidden layer. Overall, ANNs model performs better than SVM model with a coefficient of determination (R2) of 0.991, therefore it is recommended to apply ANNs to predict wellbore stability. The present analysis supplies knowledge that can be used to predict wellbore stability problems before drilling, optimize drilling parameters, and reduce drilling accidents and costs. INTRODUCTION Wellbore instability refer to a series of responses resulting from mechanical, chemical and other effects of the rock around the wellbore. Wellbore instability is one of the most critical challenges during drilling, often manifested as wellbore collapse, shrinkage, falling rocks, and formation fracturing, which may result in complex problems such as pipe sticking, high torque, mud loss, thus impeding the drilling progress and increasing the cost of the drilling operation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青树柠檬完成签到 ,获得积分10
10秒前
31秒前
nano完成签到 ,获得积分10
38秒前
xxxwax完成签到,获得积分10
45秒前
krathhong完成签到 ,获得积分10
58秒前
lielizabeth完成签到 ,获得积分0
1分钟前
ldjldj_2004完成签到 ,获得积分10
1分钟前
阳光森林完成签到 ,获得积分10
2分钟前
tjpuzhang完成签到 ,获得积分10
2分钟前
2分钟前
zyp86发布了新的文献求助10
2分钟前
谭凯文完成签到 ,获得积分10
2分钟前
woxinyouyou完成签到,获得积分0
2分钟前
nano完成签到 ,获得积分10
3分钟前
Antonio完成签到 ,获得积分10
3分钟前
xiaowuge完成签到 ,获得积分10
3分钟前
小飞完成签到 ,获得积分10
3分钟前
4分钟前
Richard完成签到 ,获得积分10
4分钟前
suxin完成签到 ,获得积分10
4分钟前
机灵鼠标发布了新的文献求助10
4分钟前
名金学南完成签到,获得积分10
4分钟前
ybwei2008_163完成签到,获得积分20
4分钟前
出金多多发布了新的文献求助10
4分钟前
人文完成签到 ,获得积分10
4分钟前
zyp86完成签到,获得积分10
5分钟前
研友_Z7XY28完成签到 ,获得积分10
5分钟前
所所应助spark810采纳,获得10
5分钟前
行走完成签到,获得积分10
5分钟前
雪雪完成签到 ,获得积分10
5分钟前
zhul09完成签到,获得积分10
5分钟前
先锋完成签到 ,获得积分0
5分钟前
张三完成签到 ,获得积分10
6分钟前
李爱国应助研友_LOoomL采纳,获得10
6分钟前
科研狗完成签到 ,获得积分10
6分钟前
niuhuhu发布了新的文献求助10
6分钟前
科研通AI2S应助狂野平凡采纳,获得10
6分钟前
未完成完成签到,获得积分10
6分钟前
6分钟前
spark810发布了新的文献求助10
7分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229760
求助须知:如何正确求助?哪些是违规求助? 2877260
关于积分的说明 8198668
捐赠科研通 2544727
什么是DOI,文献DOI怎么找? 1374636
科研通“疑难数据库(出版商)”最低求助积分说明 647015
邀请新用户注册赠送积分活动 621836