A multi-sensor fusion framework with tight coupling for precise positioning and optimization

人工智能 计算机视觉 惯性测量装置 同时定位和映射 计算机科学 里程计 点云 传感器融合 稳健性(进化) 视觉里程计 机器人 移动机器人 生物化学 基因 化学
作者
Yu Xia,Hongwei Wu,Liucun Zhu,Weiwei Qi,Shushu Zhang,Junwu Zhu
出处
期刊:Signal Processing [Elsevier]
卷期号:217: 109343-109343
标识
DOI:10.1016/j.sigpro.2023.109343
摘要

In the dynamic landscape of artificial intelligence and robotics, the pursuit of accurate positioning in mobile robots has intensified. This research addresses the limitations of single-sensor SLAM (Simultaneous Localization and Mapping) techniques in complex settings by harnessing the collective strengths of LiDAR (Light Detection And Ranging), Camera, IMU (Inertial Measurement Unit), and GNSS (Global Navigation Satellite System) sensors. The proposed multi-sensor tightly-coupled SLAM framework is an integration of point-line feature-based laser-visual-inertial odometry, visual-laser fusion loop closure detection, and factor graph-based back-end optimization. Within the visual-inertial subsystem, an advanced LSD (Line Segment Detector) feature extraction strategy is introduced, incorporating point-line fusion to enhance visual line features. Additionally, the laser point cloud is projected onto the camera coordinate system, establishing depth associations with visual attributes. Strengthening the robustness of the visual-inertial subsystem in low-texture environments, camera poses undergo optimization through a sliding-window bundle adjustment method. In the laser-inertial subsystem, IMU preintegration mitigates laser point cloud distortion. Extracting edge and plane features, coupled with frame-to-local-map matching, enhances matching efficiency while streamlining computational intricacies. This amalgamation forms the basis of the laser-visual-inertial odometry fusion system. To overcome the limitations of standalone visual and laser-based loop closure detection, a dual-loop closure method utilizing visual-laser fusion is proposed. Leveraging the DBoW2 bag-of-words model, complemented by temporal-spatial consistency checks, enhances detection efficiency and accuracy. The integration of GNSS factors imparts global constraints for expansive outdoor scenarios. Employing factor graph-based back-end optimization, the refinement of laser-visual-inertial odometry factors, visual-inertial odometry factors, IMU preintegration factors, loop closure factors, and GNSS factors culminates in precise global pose estimation and high-fidelity point cloud maps. Through rigorous evaluation of the M2DGR dataset and a mobile robot platform, the proposed methodology emerges as an exemplar of performance, showcasing superiority over the state-of-the-art LIO-SAM technique. Achieving a reduction of 2.86 m and 3.23 m in the root mean square error of absolute pose estimation across divergent environments, this approach exhibits remarkable efficacy in outdoor scenarios, thereby elevating the precision and resilience of SLAM algorithms for mobile robots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无奈完成签到,获得积分10
2秒前
3秒前
4秒前
彭于晏应助huhuhuuh采纳,获得10
6秒前
zhu ning发布了新的文献求助10
6秒前
6秒前
8秒前
9秒前
寒月如雪发布了新的文献求助10
12秒前
眼睛大盼兰完成签到 ,获得积分10
12秒前
luckinstar完成签到,获得积分10
13秒前
zhu ning完成签到,获得积分10
17秒前
Skywalker完成签到,获得积分10
20秒前
田超完成签到,获得积分10
21秒前
科研通AI2S应助刻苦绿柏采纳,获得10
21秒前
SuMX完成签到 ,获得积分10
21秒前
kento应助ElbingX采纳,获得50
21秒前
WQY完成签到,获得积分10
22秒前
快乐女孩完成签到 ,获得积分10
22秒前
秋半梦完成签到,获得积分10
23秒前
小青新关注了科研通微信公众号
23秒前
丁丁峥完成签到,获得积分10
24秒前
26秒前
稳重的若雁应助zhang20082418采纳,获得10
26秒前
HXie完成签到,获得积分10
27秒前
稳重的若雁应助WHY采纳,获得10
29秒前
科研通AI2S应助雨纷飞采纳,获得10
29秒前
时尚的远望完成签到,获得积分20
31秒前
天天快乐应助弘木采纳,获得10
31秒前
不配.应助辛勤的山雁采纳,获得10
31秒前
ljm发布了新的文献求助10
32秒前
34秒前
科研通AI2S应助靜心采纳,获得10
36秒前
36秒前
咖啡豆应助时尚的远望采纳,获得10
38秒前
酷酷的安柏完成签到 ,获得积分10
38秒前
等待丹秋完成签到,获得积分10
39秒前
树上香蕉果完成签到,获得积分10
40秒前
ljm完成签到,获得积分10
40秒前
44秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136281
求助须知:如何正确求助?哪些是违规求助? 2787312
关于积分的说明 7780828
捐赠科研通 2443293
什么是DOI,文献DOI怎么找? 1299081
科研通“疑难数据库(出版商)”最低求助积分说明 625325
版权声明 600905